Benchmarking of Single Cell RNA Sequencing Protocols for Cell Atlas Projects

EuroBioc2019, Brussels
Dec 10, 2019

cnag

centre nacional d'anàlisi genòmica centro nacional de análisis genómico

Background

Reference sample

Reference datasets

Reference datasets

matchSCore2 allows the fast annotation of unknown cell types using a reference dataset

Gene Detection

HEK293T
CEL-Seq2
MARS-Seq
Quartz-Seq2 mcSCRB-Seq SMART-Seq2 C1HT-Small C1HT-Medium

HEK293T
Monocytes
B-cells

Gene Detection

HEK293T

CEL－Seq2
MARS－Seq
Quartz－Seq2
Chromium
McSCRB－Seq
SMART－Seq2
C1HT－Small
Chromium（sn）
ddSEQ

\＃reads

Expression magnitude Expression magnitude Expression magnitude

家落岁各

B－cells

Gene Detection

Correlation of gene expression levels

Correlation of gene expression levels

Correlation of gene expression levels

Human Clustering

order \longrightarrow

Mouse Clustering

ATLAS

Integratability

Integratability

CEL-Seq2
MARS-Seq

Chromium
Quartz-Seq2 \qquad mcSCRB-Seq SMART-Seq2 C1HT-Small C1HT-Medium ddSEQ ddSEQ
Drop-Seq ICELL8 inDrop

- Enterocyte 1

Enterocyte 2

- Enterocyte progenitor Enteroendocrine
Fibroblast
- Immune cell

Secretory cell
Stem cell
Transit Amplifying

Integratability

CEL-Seq2 MARS-Seq Quartz-Seq2 mcSCRB-Seq SMART-Seq2 C1HT-Small C1HT-Medium
Enterocyte 1

- Enterocyte progenitor Enteroendocrine
Fibroblast
Immune cell
Secretory cell
Stem cell
Transit Amplifying

depth 10K \square 20K

Mappability

Regulation

matchSCore2: comparing datasets at cell and gene level

- matchSCore2 facilitates the annotation task by leveraging large-scale reference data.
- matchSCore2 trains a multinomial logistic model on the reference dataset.
- The main assumption of the model is that the number of cells N_{k} from each cell type and their proportions p_{k} are the parameters of a multinomial distribution

$$
\mathrm{M} \sim \operatorname{multinom}\left(N=\left(N_{1}, \ldots, N_{m}\right), p=\left(p_{1}, \ldots, p_{m}\right)\right) .
$$

- The signature scores S_{jk} for the cell c_{j} and cell type T_{k} are used as predictors of the model.

matchSCore2: the lung atlas

OLD

Reference cell types

- Alveolar macrophage
- B cell
- Ciliated cell
- Club cell
- Endothelial cell
- Eosinophil
- Fibroblast
- Macrophages
- Mesothelial cell
- Mki67+ proliferating cell
- Monocyte
- Pneumocyte
- Red blood cell
- T cell and NK cell

YOUNG

matchSCore2

- Alveolar macrophage
- A cell
- Ciliated ce
- Endothelial cell
- Eosinophil

Fibroblast

- Macrophages

Mesothelial cell
Mki67+ proliferating cell
Monocyte
Pneumocyte
Red blood cell

- T cell and NK cell

Clustering

matchSCore2: the lung atlas

OLD

Reference cell types

- Alveolar macrophage
- B cell
- Ciliated cell
- Club cell
- Endothelial cell
- Eosinophil
- Fibroblast
- Macrophages
- Mesothelial cell
- Mki67+ proliferating cell
- Monocyte
- Pneumocyte
- Red blood cell
- T cell and NK cell

matchSCore2

- Alveolar macrophage
- B cell
- Ciliated ce

Endothelial cell

- Eosinophil

Fibroblast

- Macrophages

Mki67+ proliferating cell
Monocyte
Pneumocyte
Red blood cell

- T cell and NK cell

Clustering

YOUNG

- 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 7 $-\quad 8$
 - 9
 - 10

T cell and NK cell-0.01 0.46
Red blood cell- $0 \begin{array}{llllllllll}0.01 & 0 & 0.01 & 0.01 & 0 & 0.01 & 0 & 0 & 0 & 0\end{array}$ Pneumocyte- $0 \quad 0 \quad 0.010 .03 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0.75$ Monocyte-0.1 $0.04 \quad 0 \quad 0 \quad 0.170 .010 .260 .02 \quad 0 \quad 0 \quad 0.01$

Macrophages-0.07 0 0 0 0 $\quad 0.1 \begin{aligned} & 0.01 \\ & 0.31 \\ & 0.01 \\ & 0\end{aligned} \quad 0 \quad 0$
Fibroblast- $0 \quad 0 \quad 0.010 .02$ 0 0.480 .010 .16 0 00
Eosinophil- $0.10 .02 \quad 0 \quad 0.010 .060 .01 \quad 0.10 .010 .010 .010 .01$
Endothelial cell-0.01 $\quad 0 \quad 0 \quad 0.010 .010 .010 .010 .02 \quad 0 \quad 0.010 .64$
Club cell- $0 \quad 0 \quad 0.020 .58$ o 0.020 .010 .020 .010 .030

B cell- $\begin{array}{llllllllllllllll} & 0.27 & 0 & 0 & 0.1 & 0 & 0.04 & 0.01 & 0.01 & 0 & 0.01\end{array}$
Alveolar macrophage- $\begin{array}{ccccccccccc}0.5 & 0.01 & 0 & 0 & 0.03 & 0 & 0.07 & 0 & 0 & 0.01 & 0\end{array}$
0.0

YOUNG

- matchSCore2 combines datasets by using a SVD decomposition.
- The datasets are projected into a new common space of coordinates.
- This type of integration allows a direct comparison across cell types that are under different conditions (genotypes, treatments, diseased).

Developing tools and standards for the integration of multimodal HCA data in order to evaluate performance, complementarity and replicability of methods.

Acknowledgements

Single Cell Genomics Team
Atefeh Lafzi
Catia Moutinho
Holger Heyn
HCA consortium

Christoph Ziegenhain
Davis J. McCarthy
Adrian Alvarez
Eduard Batlle
Sagar
Dominic Grün Julia K. Lau
Stéphane C. Boutet
Chad Sanada
Aik Ooi
Robert C. Jones
Kelly Kaihara
Chris Brampton
Yasha Talaga
Yohei Sasagawa
Kaori Tanaka
Tetsutaro Hayashi
Cornelius Fischer

Sascha Sauer
Timo Trefzer
Christian Conrad
Xian Adiconis
Lan T. Nguyen
Aviv Regev
Joshua Z. Levin
Swati Parekh
Aleksandar Janjic
Lucas E. Wange

Wolfgang Enard
Marta Gut
Rickard Sandberg
Itoshi Nikaido
Ivo Gut
Oliver Stegle

Thank you for your attention!

