



# The pitfalls of summarisation and imputation on label free mass spectrometry based proteomics

European Bioconductor Meeting 2019, December 9-11, 2019, Brussels, Belgium

## statOmics.github.io

Transcriptomics & single cell omics

Proteomics

**Meta-omics** 











- Students Adriaan Sticker & Ludger Goeminne
- Lennart Martens Lab (proteomics informatics)
- Kris Gevaert Lab (wetlab)

#### Introduction

- Omparison of popular tools
- O Robust summarisation & Inference
- Missing Peptides
- Wrap-up







Quantification Identification



Quantification Identification



#### Quantification Identification





٠

Unbalanced peptides identifications across samples and messy data

Challenges in Label Free MS-based Quatitative proteomics MS-based proteomics returns **peptides**: pieces of proteins



## We need information on protein level!



## Spike-in study (Shen et al. 2018)



- 4 repeats per spike-in condition
- Trypsin-digested human proteome
- After MaxQuant search with match between runs option
  - Only 50% of all peptides are quantified in all samples
  - ightarrow vast amount of missingness

#### Introduction

#### **②** Comparison of popular tools

- Overview tools
- Ø Difference in performance
- Impact of summarisation
- O Robust summarisation & Inference

・ロト ・ 同ト ・ ヨト ・ ヨト ・ クタク

- Missing Peptides
- Wrap-up



9 / 34

(日) (周) (日) (日) (日) (日)

$$y_{grp} = \beta_g^{group} + u_r^{run} + \beta_p^{pep} + \epsilon_{rp}$$

protein-level

- $\beta_g^{group}$ : spike-in
- random run effect  $u_r^{run} \sim N(0, \sigma_{run}^2)$  $\rightarrow$  Addresses pseudo-replication

#### peptide-level

- peptide specific effect  $\beta_p^{\text{pep}}$
- within run error  $\epsilon_{rp} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$



$$y_{grp} = \beta_g^{group} + u_r^{run} + \beta_p^{pep} + \epsilon_{rp}$$

protein-level

- $\beta_g^{group}$ : spike-in
- random run effect  $u_r^{\text{run}} \sim N(0, \sigma_{\text{run}}^2)$  $\rightarrow$  Addresses pseudo-replication

#### peptide-level

- peptide specific effect  $\beta_p^{\text{pep}}$
- within run error  $\epsilon_{rp} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$



$$y_{grp} = \beta_g^{group} + u_r^{run} + \beta_p^{pep} + \epsilon_{rp}$$

protein-level

- $\beta_g^{group}$ : spike-in
- random run effect  $u_r^{\text{run}} \sim N(0, \sigma_{\text{run}}^2)$  $\rightarrow$  Addresses pseudo-replication

#### peptide-level

- peptide specific effect  $\beta_p^{\text{pep}}$
- within run error  $\epsilon_{rp} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$



$$y_{grp} = \beta_g^{group} + u_r^{run} + \beta_p^{pep} + \epsilon_{rp}$$

protein-level

- $\beta_g^{group}$ : spike-in
- random run effect  $u_r^{\text{run}} \sim N(0, \sigma_{\text{run}}^2)$  $\rightarrow$  Addresses pseudo-replication

#### peptide-level

- peptide specific effect  $\beta_p^{\text{pep}}$
- within run error  $\epsilon_{rp} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

Estimation

- Robust regression for outliers
- **2** Penalise  $\beta^{\text{treat}}$  (Ridge regression)
- Sempirical Bayes variance estimation





## Summarisation based methods

- Perseus: MaxLFQ summarization & Inference with t-test
- Proteus
  - Summarization: average of 3 high-flyers
  - Inference: limma (linear model + EB)
- DEP
  - Summarization: MaxLFQ
  - Imputation at protein level: missingness at random and by low abundance
  - Inference: limma
- proDA
  - Summarization: MaxLFQ
  - probabilistic dropout model
  - Inference: linear model + EB
- MS-stats
  - Summarization with peptide-based model (median polish)
  - Imputation at peptide level: missingness by low abundance
  - Inference: linear model

 $TPR = \frac{TP}{TP + FN} = \frac{E. \text{ coli}}{AII \text{ E. coli}}$ 



 $FDP = \frac{FP}{TP + FP} = \frac{\text{Human}}{\text{E. coli+Human}}$ 

#### Summarisation



#### Introduction

- Omparison of popular tools
- **O Robust summarisation & Inference**

< □ > < □ > < 豆 > < 豆 > < 豆 > < 三 = < ○ < ○

- Robust Summarisation
- Ø Robust Inference
- 8 Results
- Missing Peptides
- Wrap-up

Fit MSqRob mixed model in two-stage approach

MSqRob

- No protein summaries available
- Difficult to disseminate
- Unclear to calculate degrees of freedom to adopt t-tests for inference in experiments with small sample sizes
- $\rightarrow \mathsf{Modular} \; \mathsf{approach}$ 
  - Summarize peptides to proteins using robust regression
  - O Robust penalized regression of protein level summaries

#### Summarisation with peptide based model



< □ > < 큔 > < 글 > < 글 > < 글 > 三 = ∽ Q ↔ 17/34

#### Summarisation with peptide based model



Protein by protein analysis of peptide data with linear model peptide level protein level  $y_{rp} = \epsilon_{rp} + \beta_r^{run}$ 

#### Summarisation with peptide based model



Protein by protein analysis of peptide data with linear model peptide level protein level  $y_{rp} = \beta_p^{pep} + \epsilon_{rp} + \beta_r^{run}$ 

• Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...



 Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...
 Huber Weights



 Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...
 Huber Weights



• Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...



• Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...



observation weights





#### Introduction

- Omparison of popular tools
- O Robust summarisation & inference

< □ > < □ > < 豆 > < 豆 > < 豆 > < 三 = < ○ < ○

- Robust Summarisation
- Robust Inference
- 8 Results
- Missing Peptides
- Wrap-up

#### Inference upon summarisation: Protein level model

$$y_r = \beta_0 + \beta_{g(r)}^{group} + \epsilon_r$$

• y<sub>r</sub>: protein summary of run r

• 
$$\sum_{g=1}^{G} \beta_g^{group} = 0$$



#### Inference upon summarisation: Protein level model

$$y_r = \beta_0 + \beta_{g(r)}^{group} + \epsilon_r$$
$$= \mathbf{X}_r^t \mathbf{\beta} + \epsilon_r$$

• y<sub>r</sub>: protein summary of run r

• 
$$\sum_{g=1}^{G} \beta_g^{group} = 0$$

• 
$$\beta = [\beta_0, \beta_1^{group}, \dots, \beta_G^{group}]^t$$
  
•  $\mathbf{X}_r^t = [1 \quad x_{r_1}^{group} \dots x_{r_G}^{group}]$   
•  $x_{rg}^{group} = 1$  if run r in group g  
 $x_{rg}^{group} = 0$  otherwise



< □ > < □ > < 豆 > < 豆 > < 豆 > < 三 = < ○ < ○

#### Inference upon summarisation: Protein level model

$$y_r = \beta_0 + \beta_{g(r)}^{group} + \epsilon_r$$
$$= \mathbf{X}_r^t \mathbf{\beta} + \epsilon_r$$

• y<sub>r</sub>: protein summary of run r

• 
$$\sum_{g=1}^{G} \beta_g^{group} = 0$$

• 
$$\beta = [\beta_0, \beta_1^{group}, \dots, \beta_G^{group}]^t$$
  
•  $\mathbf{X}_r^t = [1 \quad x_{r_1}^{group} \dots x_{r_G}^{group}]$   
•  $x_{rg}^{group} = 1$  if run r in group g  
 $x_{rg}^{group} = 0$  otherwise

MSqRobSum: robust M-estimation + ridge regression



- Introduction
- Omparison of popular tools
- O Robust summarisation & Inference
  - Robust Summarisation
  - Ø Robust Inference
  - Results
    - MSqRobSum vs MSqRob
    - Modular Approach
    - Fold Change Estimates

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 ののの

- Missing Peptides
- Wrap-up

## MSqRobSum vs MSqRob



- Still very good performance
- 3 times faster
- df well defined
- Summaries for visualisation

#### MSqRobSum vs DEP



< □ > < @ > < 분 > < 분 > 분 = 의 원 = 의 Q (~ 24/34

## Summarisation & inference are modular



<ロト < 部ト < 言ト < 言ト 三言 のへで 25/34

#### Summarisation & inference are modular



## Summarisation & inference are modular



#### Fold change estimates



#### Introduction

- Omparison of popular tools
- O Robust summarisation & Inference
- Missing Peptides
- Wrap-up

#### Missing peptides



< 문▶ 문⊨ ∽੧. 28/34

#### Hurdle Model

$$\begin{cases} z_{pr}|x_{pr} & \sim & B(\pi_r) \\ y_{pr}|z_{pr} = 1, x_{pr}, u_r^{run} & \sim & N(\mu_{pr}, \sigma^2) \end{cases}$$

• binary component  $z_{pr}$  with detection probability  $\pi_r$ 

$$z_{pr} = 0$$
: Peptide intensity is missing  $z_{pr} = 1$ : Peptide intensity is observed

 Normal component for log2-transformed intensities y<sub>pr</sub> for peptide p = 1,..., P in run r = 1,..., R

(日) (四) (三) (三) (三) (三) (四) (三) (三)

#### Hurdle Model

$$\begin{cases} z_{pr}|x_{pr} & \sim & B(\pi_r) \\ y_{pr}|z_{pr} = 1, x_{pr}, u_r^{run} & \sim & N(\mu_{pr}, \sigma^2) \end{cases}$$

- Likelihood of the model implies an estimation ortogonality
- Estimation and inference on π<sub>r</sub> via logistic regression of peptide presence absence: differential detection
- Estimation and inference on mupr via MSqRob model: differential expression given detection
- Combine inference on both components using stageR



비로 서로에서로에 수많이.





- 3 patients
- biopsies of multiple heart regions
  - Left Atrium
  - Right Atrium
  - Atrial Septum
  - Left Ventriculum
  - Right Ventriculum
  - Ventriculum Septum

• . . .







## Wrap-up

- Summarization has to account for peptide effects
- Imputation can be very detrimental
- **③** Robust summarisation can avoid imputation to some extend
- Robust inference with linear models further improves the performance
- Hurdle model builds upon missing peptides without needing rigid assumptions
- Preprint on summarization: Sticker et al. 2019 biorxiv http://dx.doi.org/10.1101/668863
- Preprint on hurdle model: Goeminne et al. 2019 https://doi.org/10.1101/782466
- O Robust summarization is also implemented as a method in the combineFeatures of the MSnBase bioconductor package.

## statOmics is hiring predocs and postdocs

#### statOmics.github.io





#### Ghent, Belgium

<ロ> < 回> 34/34

#### **M**-estimation

 Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...



<ロト < 部 > < 臣 > < 臣 > 三日 の Q () 34 / 34

## **M**-estimation

• Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...



#### M-estimation

 Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...



• Iteratively fit model with observation weights  $w(\epsilon_{rp})$ 

#### Ridge regression

$$y_r = \mathbf{X}_r^t \boldsymbol{\beta} + \epsilon_r$$



Parameters estimation with loss function:

$$\operatorname{argmin} \sum_{r=1}^{n} w(d_r) \left( y_r - \mathbf{X}_r^t \beta \right)^2 + \lambda \sum_{g \neq 0} \left( \beta_g \right)^2$$

with  $\lambda$ : penalty term for regularization of parameters of interest estimated using link between ridge regression and mixed models

#### Ridge regression

Tune the ridge penalties by exploiting the link between ridge regression and Mixed Models:

$$y_r = \mathbf{X}_r^t \boldsymbol{\beta} + \epsilon_r$$

with

• 
$$\beta_{g} \sim N\left(0, rac{\sigma^{2}}{\lambda}
ight)$$
 with  $g = 1, \dots, J$ 

- $\epsilon_r \sim N\left(0,\sigma^2\right)$
- Variance components are estimated using Ime4 mixed model software
- Predictions of the random effects  $\beta_g$  coincide with solution of ridge estimator.

#### MaxLFQ summarization

#### а

•

#### >P63208

MPSIKLQSSDGEIPEVDVEIAKQSVTIKTMLEDLGMDDEGDD DPVPLENVNAAILKKVIQWCTHIKDDPPPEDDENKEK<u>RTDD</u> IPVWDQEFLKVDQGTLEELILAANVLDIKGLLDV7CKVANM IKGKTPEEIRKTFNIKNDFTEEEBAQVRKENQWCEEK

| D                     |                   |                       |                |                |      |                |       |
|-----------------------|-------------------|-----------------------|----------------|----------------|------|----------------|-------|
| Peptide<br>species    | Sequence          |                       |                |                | Char | ge             | Mod.  |
| P <sub>1</sub>        | LQSSDGEIFEVDVEIAK |                       |                |                | 2    |                | -     |
| <b>P</b> <sub>2</sub> | LQSSDGEIFEVDVEIAK |                       |                |                | 3    |                | -     |
| P <sub>3</sub>        | RTDDIPVWDQEFLK    |                       |                |                | 2    |                | -     |
| P4                    | TVANMIK           |                       |                |                | 2    |                | -     |
| P <sub>5</sub>        | TVANMIK           |                       |                |                | 2    |                | Oxid. |
| P <sub>6</sub>        | TPEEIRK           |                       |                |                | 3    |                | -     |
| P <sub>7</sub>        | NDFTEEEEAQVR      |                       |                |                | 2    |                | -     |
| С                     |                   |                       |                |                |      |                |       |
| Sample                | P <sub>1</sub>    | <b>P</b> <sub>2</sub> | P <sub>3</sub> | P <sub>4</sub> | Ps   | P <sub>6</sub> | P7    |
| Α                     |                   | +                     |                |                |      | +              |       |
| в                     |                   | +                     | +              |                |      | +              |       |
| С                     | +                 | +                     | +              | +              |      | +              | +     |
| D                     | +                 | +                     |                | +              |      | +              | +     |
| E                     |                   | +                     |                | +              |      |                | +     |
| F                     |                   | +                     |                |                | +    |                |       |

|   | Α               | в               | С               | D               | E               | F |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|---|
| F | r <sub>FA</sub> | r <sub>FB</sub> | r <sub>FC</sub> | r <sub>FD</sub> | r <sub>FE</sub> |   |
| Е | r <sub>EA</sub> | r <sub>EB</sub> | r <sub>EC</sub> | r <sub>ED</sub> |                 |   |
| D | r <sub>DA</sub> | r <sub>DB</sub> | r <sub>DC</sub> |                 |                 |   |
| С | r <sub>ca</sub> | r <sub>cB</sub> |                 |                 |                 |   |
| в | r <sub>BA</sub> |                 |                 |                 |                 |   |
| A |                 |                 |                 |                 |                 |   |
| α |                 |                 |                 |                 |                 |   |

#### e

| $r_{BA} = I_B / I_A$ | $r_{CA} = I_C / I_A$ | $r_{CB} = I_C / I_B$     |
|----------------------|----------------------|--------------------------|
| $r_{DA} = I_D / I_A$ | $r_{DB} = I_D / I_B$ | $r_{DC} = I_D / I_C$     |
| $r_{EC} = I_E / I_C$ | $r_{ED} = I_E / I_D$ | <i>I<sub>F</sub></i> = 0 |

