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Differential splicing

• Differential splicing (DS) studies how alternative splicing patterns
change between conditions.

• We present a hierarchical Bayesian method for DS, based on
RNA-seq data.

• The tool is distributed as a Bioconductor R package: BANDITS.
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Mapping uncertainty

Slide adapted from Trapnell et al. (2013), Nat Biotech

• A big mathematical challenge in differential splicing analyses is that
transcript level counts are not observed because most reads map to
multiple transcripts.

• Most DS methods use transcript level estimated counts, obtained
via EM algorithms (e.g., Salmon and kallisto); however the
uncertainty in their estimate is typically neglected.

• Other methods instead (including BANDITS), avoid the
quantification step and input the equivalence classes of reads (i.e.,
what transcripts each read is compatible with): BANDITS samples
the transcript (and gene) allocation of reads.
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Dirichlet-Multinomial hierarchical model
• Consider a gene with K transcripts and N samples in a given group.
• The transcript level counts for an individual sample are assumed to

follow a Multinomial distribution:

X (i)|π(i) ∼ Multinom
(
n(i), π(i)

)
, i = 1, ...,N, (1)

where π(i) =
(
π
(i)
1 , ..., π

(i)
K

)
indicates the relative expression of

transcripts 1, ...,K within the gene and n(i) =
∑K

k=1 X
(i)
k .

• π(i) is assumed to vary between samples due to biological variation;
a priori we assume:

π(i) ∼ Dirichlet(δ), i = 1, ...,N, (2)

where δ = (δ1, . . . , δK ).
• We test if the mean relative abundance of transcripts,

π̄ =
δ∑K

k=1 δk
, varies between conditions.
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In a nutshell

• BANDITS:

I inputs equivalence classes of reads and samples their transcript
(and gene) allocations;

I allows reads to be aligned to the transcriptome (with Salmon
or kallisto) or to the genome (with STAR);

I uses a hierarchical structure, to model the variability between
biological replicates;

I tests for differential splicing, both, at the gene and transcript
level;

I corrects for the different lengths of transcripts;
I is computationally efficient: a 6 vs 6 group comparison

(human genome) runs in a laptop in < 2 h;
I also provides a conservative score (BANDITS_inv) which

accounts for the inversion of the dominant transcript.
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Benchmarking

• We benchmarked our method against several competitors in three
simulated and two experimental datasets (all human genome).

• Simulation studies:

I a 3 vs 3 two-group comparison (not shown);
I a 6 vs 6 two-group comparison (not shown);
I a 6 vs 6 two-group comparison (with transcript pre-filtering);

• Experimental data:

I “Best et al. data” (Best et al., 2014), with a 3 vs 3 two-group
comparison, with 82 validated genes (via PCR);

I a “null” experimental dataset (Kim et al., 2013), with a 3 vs 3
two-group comparison, where all samples belong to the same
group of healthy patients.
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Simulation study
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TPR vs FDR for the 6 vs 6 simulation study with transcript pre-filtering.
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Best et al. data

0.01 0.05 0.10 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

FPR

T
P

R

method

BANDITS
BANDITS_inv
BayesDRIMSeq
BayesDRIMSeq_inv
cjBitSeq

cjBitSeq_inv
DEXSeq
DEXSeq_ECCs
DEXSeq_TECs
DRIMSeq

limma
rats
SUPPA2

TPR vs FPR for the “Best et al.” data analysis.
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Best et al. data

Median AUC pAUC pAUC
position 0.1 0.2

BANDITS_inv 596.00 0.81 0.04 0.11
BANDITS 672.75 0.80 0.04 0.11
cjBitSeq 900.00 0.79 0.04 0.10
rats 942.50 0.80 0.03 0.10
DEXSeq_TECs 968.00 0.79 0.03 0.09
DEXSeq_ECCs 1039.00 0.78 0.03 0.10
BayesDRIMSeq 1231.00 0.74 0.02 0.08
DEXSeq 1348.00 0.78 0.03 0.08
limma 1556.00 0.74 0.03 0.08
SUPPA2 2109.75 0.67 0.02 0.07
DRIMSeq 3248.00 0.59 0.03 0.07
cjBitSeq_inv 5146.50 0.59 0.02 0.05
BayesDRIMSeq_inv 5362.00 0.57 0.02 0.04
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Null experimental data
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FPR vs FPR for the “null.” experimental data analysis.
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Availability and Acknowledgements

• Bioconductor R package:

I https://bioconductor.org/packages/BANDITS
I https://github.com/SimoneTiberi/BANDITS

• Pre-print

I Tiberi and Robinson, biorxiv (2019). BANDITS: Bayesian
differential splicing accounting for sample-to-sample variability
and mapping uncertainty.
https://www.biorxiv.org/content/10.1101/750018v1

• Acknowledgements:

I Mark D Robinson;
I Charlotte Soneson and the Robinson lab;
I Panagiotis Papastamoulis, Magnus Rattray and David Rossell.
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