Robust small molecule-protein interaction inference reveals unknown drug off-targets

Nils Kurzawa PhD Student, Savitski Lab, EMBL Heidelberg

Fumarate

2 09/12/2019

Which proteins interact with certain small molecules?

The thermal shift assay

09/12/2019

3

Martinez Molina et al. (2013) *Science*; Savitski et al. (2013) *Science*; Mateus, Määttä & Savitski (2017) *Proteome Science*

Two dimensional thermal proteome profiling (2D-TPP)

Savitski et al. (2013) Science; Becher et al. (2016) Nat. Chem. Biol.

Two dimensional thermal proteome profiling (2D-TPP)

4

Savitski et al. (2013) Science; Becher et al. (2016) Nat. Chem. Biol.

Compound concentration

Compound concentration

Compound concentration

How to analyze 2D-TPP datasets with false discovery rate control?

How to analyze 2D-TPP datasets with false discovery rate control?

A functional analysis approach for 2D-TPP data

Null model: protein remains unaffected by treatment

log10(treatment conc.)

7

A functional analysis approach for 2D-TPP data

Null model: protein remains unaffected by treatment

Alternative model: protein stability is affected by treatment

7

Constructing null and alternative models

Null model: protein remains unaffected by treatment Alternative model: protein stability is affected by treatment

8

Constructing null and alternative models

Null model: protein remains unaffected by treatment

Alternative model: protein stability is affected by treatment

Kurzawa et al. in preparation

Constructing null and alternative models

8

https://github.com/nkurzaw/TPP2D

 Previously detected targets are found: BRD2-4 and HADHA

- Previously detected targets are found: BRD2-4 and HADHA
- New off-target found: ACTN4

- Previously detected targets are found: BRD2-4 and HADHA
- New off-target found: ACTN4

control

JQ1 treatment

Sristhi Dar

Acknowledgements

EMBL Heidelberg: Misha Savitski Wolfgang Huber Srishti Dar Sindhuja Sridharan Isabelle Becher André Mateus Britta Velten Dorothee Childs Cellzome, GSK: Marcus Bantscheff Jessica Perrin Thilo Werner Holger Franken Carola Doce Maria Fälth-Savitski

CRUK Cambridge: Karsten Bach

ZMBH Heidelberg: Simon Anders

All Savitski and Huber Group members at EMBL

Thank you!

09/12/2019

Constructing an H1 model (treatment effect)

$$y_{i,t} = \beta_{i,t}^0 + \epsilon_{i,t}$$

 $y_{i,t}$: log2 intensity for protein i at temperature t $\beta_{i,t}^0$: concentration-independet intercept parameter for protein i at temperature t

Constructing an H1 model (treatment effect)

$$y_{i,t}(c) = \beta_{i,t}^0 + \frac{\alpha_{i,t}\delta_i^{\max}}{1 + \exp(\kappa_i(c - \xi(t)_i))} + \epsilon_{i,t,c}$$

 $y_{i,t}(c)$: log2 intensity for protein i at temperature t, at concentration c

- $\beta_{i,t}^{0}$: concentration-independet intercept parameter for protein i at temperature t (value y will take for c = 0)
- δ_i^{\max} : maximal stabilization
- $\alpha_{i,t}$: parameter indicating how much relative stabilization happens at temperature t
- κ_i : slope factor
- $\xi(t)_i$: linear function describing decline of the pEC50 with increasing temperature

Functional analysis of TPP melting curves: NPARC

Childs*, Bach*, Franken* et al. (2019) Mol. Cellul. Prot.

Method performance on JQ1 lysate dataset

- We currently follow up on ACTN4 as a potential off-target of JQ1
- effects of JQ1 on actin bundle formation have been observed, but were attributed to transcriptional changes via BRDs Qu et al. 2018, Cell Death Discovery

Controlling FDR

- Past experience: F statistic does not lead to valid pvalues in melting curve/dose-response setting
- because residuals are correlated and heteroscedastic
- Approach: bootstrapping null distribution:
 - Fit H0 model for every protein
 - Resample residuals from H0 10 times per protein, fit
 H1 and compute F statistics
 - Repeatedly (*B* times) do this and jointly rank results with those from true dataset

- Compute FDR:
$$FDR_{\theta} = \frac{\pi_{\theta} \sum_{b}^{B} \# \{F_{i}^{0,b} \ge \theta\}}{\# \{F_{i} \ge \theta\}}$$

Thermal proteome profiling (TPP)

33 09/12/2019

Savitski et al. (2014) Science; Franken et al. (2015) Nat. Prot.

2D-TPP data analysis

2D-TPP data analysis: what's the matter?

- Fitting dose-response models per temperature can be misleading
- Hits defined by manual thresholds

2D-TPP data analysis: what's the matter?

- Fitting dose-response models per temperature can be misleading
- Hits defined by manual thresholds
- No false discovery rate (FDR) control
- → For experiments with several (expected)
 Targets, FDR estimation is crucial!

Method performance on Panobinostat in-cell dataset

- Previously detected targets are found: HDAC1,2 and 6 and off-targets FADS1, 2, TTC38 and PAH
- New potential off-target found: DHRS1

