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Chapter 1

Introduction

Editors: Levi Waldron1 Sean Davis2 Marcel Ramos3 Lori Shepherd4. Martin Morgan5. Last modified: 30
July, 2018.

Welcome to Bioc2018. This year’s conference includes a wide array of workshops for audiences ranging from
beginner to advance users and developers. Workshop materials are available as a book in html, pdf, and
eBook format at https://bioconductor.github.io/BiocWorkshops/. Workshops are organized by level and
topic according to numbers, as described below. Every workshop starts with a syllabus that will help you to
decide whether it matches your learning goals.

1.1 The Workshops

This book contains workshops for R / Bioconductor training. The workshops are divided into 3 sections:

• Learn (100-series chapters) contains material for beginning users of R and Bioconductor. However,
even experienced R and Bioconductor users may find something new here.
– 100: R and Bioconductor for everyone: an introduction
– 101: Introduction to Bioconductor annotation resources
– 102: Solving common bioinformatic challenges using GenomicRanges
– 103: Public data resources and Bioconductor

• Use (200-series chapters) contains workshops emphasizing use of Bioconductor for common tasks, e.g.,
RNA-seq differential expression, single-cell analysis, gene set enrichment, multi’omics analysis, genome
analysis, network analysis, and pharmacogenomics.
– 200: RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR
– 201: RNA-seq data analysis with DESeq2
– 202: Analysis of single-cell RNA-seq data: Dimensionality reduction, clustering, and lineage

inference
– 210: Functional enrichment analysis of high-throughput omics data
– 220: Workflow for multi-omics analysis with MultiAssayExperiment
– 230: Cytoscape automation in R using Rcy3
– 240: Fluent genomic data analysis with plyranges
– 250: Working with genomic data in R with the DECIPHER package
– 260: Biomarker discovery from large pharmacogenomics datasets

1City University of New York, New York, NY
2Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
3City University of New York and Roswell Park Comprehensive Cancer Center, NY
4Roswell Park Comprehensive Cancer Center, Buffalo, NY
5Roswell Park Comprehensive Cancer Center, Buffalo, NY
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• Develop (500-series chapters) contains workshops to help expert users hone their skills and contribute
their domain-specific knowledge to the Bioconductor community. These workshops are presented on
“Developer Day”.

– 500: Effectively using the DelayedArray framework to support the analysis of large datasets
– 510: Maintaining your Bioconductor package

1.2 How to use these workshops

These workshops have a lot of package dependencies, and some use data that you must have on disk. There
are several ways to run the code from these workshops yourself.

1.2.1 Install on your own computer

These workshops were developed for Bioconductor 3.8 (development branch) to allow teaching the most
up-to-date methods. Some, but not all, workshop materials will work on Bioconductor 3.7, and (almost?)
all should work after the release of Bioconductor 3.8 in October 2018. To run the workshops on your own
computer, you should install Bioconductor >= 3.8 (which is the development version before October 2018,
and the release version thereafter). The following commands should then install all needed dependencies, at
least for Linux:

if (!require("BiocManager"))
install.packages("BiocManager")

BiocManager::install("Bioconductor/BiocWorkshops")

We have noticed that on Windows and Mac, this may not install the required annotation and experimental
data packages. If you get errors about missing dependencies, you can install these with additional calls to the
BiocManager::install() function.

1.2.2 Use the exact same AMI as the workshop

Each participant in the Bioc2018 workshops was provided with their own machine image (called an Amazon
Machine Image [AMI]) that contained up-to-date versions of R, required R packages, all necessary operating
system libraries, and all workshop materials. This image has been tested by the organizers and more than
100 workshop participants, so if you use it, everything will just work. Using this image is the most hassle-free
way to work through these workshops yourself without having to worry about setup.

To use this image yourself (including the AMI image #). . . (Lori/Sean)

To offer this image to numerous students in a workshop. . . (Lori/Sean)

1.2.3 Make your own Docker image and AMI

If you want to alter the image in some way, you can rebuild it using packer, a toolkit that enables for the
AMI creation process. Clone the GitHub repo:

https://github.com/Bioconductor/BiocWorkshops

Navigate to its packer subdirectory, then you should be able to do packer build bioc_2018.json (after
packer is installed and AWS keys sorted out) to create a new AMI based on the Bioc R 3.5.1 devel AMI. You
can see the “provision” section for details of the build process (Rscripts, basically). Of course, the json file
can be altered for customization, including pegging to specific BiocWorkflow tags, if interested.

https://packer.io
https://github.com/Bioconductor/BiocWorkshops
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100: R and Bioconductor for
everyone: an introduction

Authors: Martin Morgan1, Lori Shepherd. Last modified: 17 July 2018

2.1 Overview

2.1.1 Description

This workshop is intended for those with little or no experience using R or Bioconductor. In the first portion of
the workshop, we will explore the basics of using RStudio, essential R data types, composing short scripts and
using functions, and installing and using packages that extend base R functionality. The second portion of the
workshop orients participants to the Bioconductor collection of R packages for analysis and comprehension
of high-throughput genomic data. We will describe how to discover, install, and learn to use Bioconductor
packages, and will explore some of the unique ways in which Bioconductor represents genomic data. The
workshop will primarily be instructor-led live demos, with participants following along in their own RStudio
sessions.

2.1.2 Pre-requisites

This workshop is meant to be introductory, and has no pre-requisites.

Participants will maximize benefit from the workshop by pursuing elementary instructions for using R, such
as the introductory course from DataCamp.

2.1.3 Participation

Participants will use RStudio interactively as the instructor moves carefully through short examples of R and
Bioconductor code.

2.1.4 R / Bioconductor packages used

• Base R packages, e.g., stats, graphics; ggplot2
1Roswell Park Comprehensive Cancer Center, Buffalo, NY

9

https://www.datacamp.com/courses/free-introduction-to-r
https://cran.r-project.org/package=ggplot2
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• Essential Bioconductor packages, e.g., rtracklayer, GenomicRanges, SummarizedExperiment

2.1.5 Time outline

An example for a 45-minute workshop:

Activity Time
Introduction to R 45m
- Using RStudio
- R vectors and data frames
- Data input and manipulation
- Scripts and functions
- Using R packages
Introduction to Bioconductor 60m
- Project history
- Discovering and using packages
- Working with objects

2.1.6 Workshop goals and objectives

2.1.7 Learning goals

Part 1: R

• Import text (e.g., ‘comma-separate value’) files, into R.
• Perform manipulations of R data frames.
• Apply R functions for statistical analysis and visualization.
• Use R packages to extend basic functionality.

Part 2: Bioconductor

• Find, install, and learn how to use Bioconductor packages.
• Import and manipulate genomic files and Bioconductor data objects.
• Start an RNA-seq differential expression work flow.

2.1.8 Learning objectives

Part 1: R

• Import the ‘pData.csv’ file describing samples from an experiment.
• ‘Clean’ the pData to include only a subset of values.
• Perform a t-test assessing the relationship between ‘age’ and ‘mol.biol’ (presence of BCR/ABL) amongst

samples.
• Visualize the relationship between ‘age’ and ‘mol.biol’ using base R’s boxplot() function.
• Load the ggplot2 package.
• Visualize the relationship between two variables using ggplot().

Part 2: Bioconductor

• Discover, install, and read the vignette of the DESeq2 package.
• Discover the ‘single cell sequencing’ vignette
• Import BED and GTF files into Bioconductor
• Find regions of overlap between the BED and GTF files.

https://bioconductor.org/packages/rtracklayer
https://bioconductor.org/packages/GenomicRanges
https://bioconductor.org/packages/SummarizedExperiment
https://cran.r-project.org/package=ggplot2
https://bioconductor.org/packages/DESeq2
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Figure 2.1:

• Import a matrix and data.frame into Bioconductor ’s SummarizedExperiment object for RNA-Seq
differential expression.

2.2 Introduction to R

2.2.1 RStudio orientation

2.2.2 Very basics

R works by typing into the console. A very simple example is to add the numbers 1 and 2.
1 + 2
#> [1] 3

R works best on vectors, and we can construct vectors ‘by hand’ using the function c() (perhaps for
_c_oncatenate). Here is a vector of the numbers 1, 3, and 5.
c(1, 3, 5)
#> [1] 1 3 5

R has many shortcuts. A very commonly used shortcut is to create a vector representing a sequence of
numbers using :. For instance, here is a vector representing the numbers 1 through 5.
1:5
#> [1] 1 2 3 4 5
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It would be pretty tedious to continually have to enter vectors by hand. R allows objects such as the vector
returned by c() to be assigned to variables. The variables can then be referenced at subsequent points in the
script.
x <- c(1, 3, 5)
x
#> [1] 1 3 5

Since R knows about vectors, it can be very easy to transform all elements of the vector, e.g., taking the
log() of x;
log(x)
#> [1] 0.000000 1.098612 1.609438

The return value of log(x) is itself a vector, and can be assigned to another variable.
y <- log(x)
y
#> [1] 0.000000 1.098612 1.609438

2.2.3 Data input and manipulation

Read data files into R data.frame objects. We start by reading a simple file into R. The file is a ‘csv’
(comma-separated value) file that could have been exported from a spreadsheet. The first few lines of the file
include:

"Sample","sex","age","mol.biol"
"01005","M",53,"BCR/ABL"
"01010","M",19,"NEG"
"03002","F",52,"BCR/ABL"
"04006","M",38,"ALL1/AF4"
"04007","M",57,"NEG"

The file describes samples used in a classic microarray experiment. It consists of four columns:

• Sample: a unique identifier
• sex: the sex of each patient
• age: the age of each patient
• mol.biol: cytological characterization of each patient, e.g., "BCR/ABL" indicates presence of the classic

BCR/ABL translocation, while "NEG" indicates no special cytological information.

We start by asking are to find the path to the file, using a function file.choose(). This will open a dialog
box, and we will navigate to the location of a file named "ALL-phenoData.csv". Print the value of fname to
view the path that you choose.
fname <- file.choose()
fname

Confirm that the file exists using the file.exists() command.
file.exists(fname)
#> [1] TRUE

Read the data from the csv file using read.csv(); assign the input to a variable called pdata.
pdata <- read.csv(fname)

Viewing the data.frame

We could print the entire data frame to the screen using
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pdata

but a smarter way to explore the data is to ask about its dimensions (rows and columns) using dim(), to
look at the head() and tail() of the data, and to ask R for a brief summary().
dim(pdata) # 128 rows x 4 columns
#> [1] 128 4
head(pdata) # first six rows
#> Sample sex age mol.biol
#> 1 01005 M 53 BCR/ABL
#> 2 01010 M 19 NEG
#> 3 03002 F 52 BCR/ABL
#> 4 04006 M 38 ALL1/AF4
#> 5 04007 M 57 NEG
#> 6 04008 M 17 NEG
tail(pdata) # last six rows
#> Sample sex age mol.biol
#> 123 49004 M 24 NEG
#> 124 56007 M 37 NEG
#> 125 64005 M 19 NEG
#> 126 65003 M 30 NEG
#> 127 83001 M 29 NEG
#> 128 LAL4 <NA> NA NEG
summary(pdata)
#> Sample sex age mol.biol
#> 01003 : 1 F :42 Min. : 5.00 ALL1/AF4:10
#> 01005 : 1 M :83 1st Qu.:19.00 BCR/ABL :37
#> 01007 : 1 NA's: 3 Median :29.00 E2A/PBX1: 5
#> 01010 : 1 Mean :32.37 NEG :74
#> 02020 : 1 3rd Qu.:45.50 NUP-98 : 1
#> 03002 : 1 Max. :58.00 p15/p16 : 1
#> (Other):122 NA's :5

The age element of pdata is a vector of integers and the summary provides a quantitative description of the
data. Some values are missing, and these have the special value NA.

The sex and mol.biol vectors are factors. The sex variable has two levels (M, F) while the mol.biol vector
has 6 levels. A factor is a statistical concept central to describing data; the levels describe the universe of
possible values that the variable can take.

Sample is also a factor, but it should probably be considered a character vector used to identify each
sample; we clean this up in just a minute.

In addition to summary(), it can be helpful to use class() to look at the class of each object or column, e.g.,
class(fname)
#> [1] "character"
class(pdata)
#> [1] "data.frame"

Reading data, round two

We noted that Sample has been read by R as a factor. Consult the (complicated!) help page for read.csv()
and try to understand how to use colClasses to specify how each column of data should be input.

To navigate to the help page, use
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?read.csv

Focus on the colClasses argument. It is a vector that describes the class each column should be interpretted
as. We’d like to read the columns as character, factor, integer, factor. Start by creating a vector of desired
values
c("character", "factor", "integer", "factor")
#> [1] "character" "factor" "integer" "factor"

Then add another argument to our use of read.csv(), specifying the desired column classes as this vector.
pdata <- read.csv(

fname,
colClasses = c("character", "factor", "integer", "factor")

)
summary(pdata)
#> Sample sex age mol.biol
#> Length:128 F :42 Min. : 5.00 ALL1/AF4:10
#> Class :character M :83 1st Qu.:19.00 BCR/ABL :37
#> Mode :character NA's: 3 Median :29.00 E2A/PBX1: 5
#> Mean :32.37 NEG :74
#> 3rd Qu.:45.50 NUP-98 : 1
#> Max. :58.00 p15/p16 : 1
#> NA's :5

Subsetting

A basic operation in R is to subset data. A data.frame is a two-dimensional object, so it is subset by
specifying the desired rows and columns. Several different ways of specifying rows and colums are possible.
Row selection often involves numeric vectors, logical vectors, and character vectors (selecting the rows with
the corresponding rownames()). Column selection is most often with a character vector, but can also be
numeric.
pdata[1:5, c("sex", "mol.biol")]
#> sex mol.biol
#> 1 M BCR/ABL
#> 2 M NEG
#> 3 F BCR/ABL
#> 4 M ALL1/AF4
#> 5 M NEG
pdata[1:5, c(2, 3)]
#> sex age
#> 1 M 53
#> 2 M 19
#> 3 F 52
#> 4 M 38
#> 5 M 57

Omitting either the row or column index selects all rows or columns
pdata[1:5, ]
#> Sample sex age mol.biol
#> 1 01005 M 53 BCR/ABL
#> 2 01010 M 19 NEG
#> 3 03002 F 52 BCR/ABL
#> 4 04006 M 38 ALL1/AF4
#> 5 04007 M 57 NEG
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The subset operator [ generally returns the same type of object as being subset, e.g., above all return values
are data.frame objects. It is sometimes desirable to select a single column as a vector. This can be done
using $ or [[; note that some values are NA, indicating that the patient’s age is “not available”.
pdata$age
#> [1] 53 19 52 38 57 17 18 16 15 40 33 55 5 18 41 27 27 46 37 36 53 39 53
#> [24] 20 44 28 58 43 48 58 19 26 19 32 17 45 20 16 51 57 29 16 32 15 NA 21
#> [47] 49 38 17 26 48 16 18 17 22 47 21 54 26 19 47 18 52 27 52 18 18 23 16
#> [70] NA 54 25 31 19 24 23 NA 41 37 54 18 19 43 53 50 54 53 49 20 26 22 36
#> [93] 27 50 NA 31 16 48 17 40 22 30 18 22 50 41 40 28 25 16 31 14 24 19 37
#> [116] 23 30 48 22 41 52 32 24 37 19 30 29 NA
pdata[["age"]]
#> [1] 53 19 52 38 57 17 18 16 15 40 33 55 5 18 41 27 27 46 37 36 53 39 53
#> [24] 20 44 28 58 43 48 58 19 26 19 32 17 45 20 16 51 57 29 16 32 15 NA 21
#> [47] 49 38 17 26 48 16 18 17 22 47 21 54 26 19 47 18 52 27 52 18 18 23 16
#> [70] NA 54 25 31 19 24 23 NA 41 37 54 18 19 43 53 50 54 53 49 20 26 22 36
#> [93] 27 50 NA 31 16 48 17 40 22 30 18 22 50 41 40 28 25 16 31 14 24 19 37
#> [116] 23 30 48 22 41 52 32 24 37 19 30 29 NA

We can use class() to determine the type of each column
class(pdata$age)
#> [1] "integer"

as well as other functions to manipulate or summarize the data. What do each of the following lines do?
table(pdata$mol.biol)
#>
#> ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
#> 10 37 5 74 1 1
table(is.na(pdata$age))
#>
#> FALSE TRUE
#> 123 5
levels(pdata$sex)
#> [1] "F" "M"

Basic data manipulations

We’ve seen (e.g., log(), above) that numeric vectors can be transformed by mathematical functions. Similar
functions are available for other data types. A very common scenario is to create logical vectors that are then
used to subset objects. Here we compare each element of the sex column to "F". The result indicates which
rows in the pdata correspond to indivdudals with sex "F".
pdata$sex == "F"
#> [1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
#> [12] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
#> [23] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
#> [34] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
#> [45] NA FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
#> [56] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
#> [67] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
#> [78] FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
#> [89] FALSE TRUE FALSE FALSE TRUE FALSE NA FALSE TRUE TRUE FALSE
#> [100] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
#> [111] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
#> [122] FALSE FALSE FALSE FALSE FALSE FALSE NA
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A more elaborate example identifies rows corresponding to females greater than 50 years of age. Note that
some comparisons are NA; why is that?
(pdata$sex == "F") & (pdata$age > 50)
#> [1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [23] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
#> [34] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
#> [45] NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [56] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
#> [67] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [78] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
#> [89] FALSE FALSE FALSE FALSE FALSE FALSE NA FALSE FALSE FALSE FALSE
#> [100] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [122] FALSE FALSE FALSE FALSE FALSE FALSE NA

Another elaborate comparison is %in%, which asks whether each element in the vector on the left-hand
side of %in% is contained in the set of values on the right-hand side, for example, which elements of the
pdata$mol.biol column are in the set "BCR/ABL" or "NEG"?
table( pdata$mol.biol )
#>
#> ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
#> 10 37 5 74 1 1
pdata$mol.biol %in% c("BCR/ABL", "NEG")
#> [1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [12] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [23] TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
#> [34] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
#> [45] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
#> [56] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
#> [67] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
#> [78] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
#> [89] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
#> [100] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [111] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [122] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

The subset() function can be used to perform the subset, e.g., selecting all records of females older than 50
subset(pdata, sex == "F" & age > 50)
#> Sample sex age mol.biol
#> 3 03002 F 52 BCR/ABL
#> 27 16004 F 58 ALL1/AF4
#> 30 20002 F 58 BCR/ABL
#> 39 24011 F 51 BCR/ABL
#> 58 28021 F 54 BCR/ABL
#> 63 28032 F 52 ALL1/AF4
#> 71 30001 F 54 BCR/ABL
#> 84 57001 F 53 NEG

The return value of subset() can be assigned to a variable, so the below creates a subset of pdata
corresponding to indivdiuals whose mol.biol is either "BCR/ABL" or "NEG"; the result is assigned to a
variable bcrabl.
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bcrabl <- subset(pdata, mol.biol %in% c("BCR/ABL", "NEG"))
dim( bcrabl )
#> [1] 111 4

Here’s a tabular summary of the levels of the mol.biol factor in bcrabl
table(bcrabl$mol.biol)
#>
#> ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
#> 0 37 0 74 0 0

Note that the factor includes levels that are not actually present in the subset. For our work below, we’d like
to remove the unused levels. This can be done by calling the factor() function
factor(bcrabl$mol.biol)
#> [1] BCR/ABL NEG BCR/ABL NEG NEG NEG NEG NEG
#> [9] BCR/ABL BCR/ABL NEG NEG BCR/ABL NEG BCR/ABL BCR/ABL
#> [17] BCR/ABL BCR/ABL NEG BCR/ABL BCR/ABL NEG BCR/ABL NEG
#> [25] BCR/ABL NEG BCR/ABL NEG BCR/ABL BCR/ABL NEG BCR/ABL
#> [33] BCR/ABL BCR/ABL NEG BCR/ABL NEG NEG NEG BCR/ABL
#> [41] BCR/ABL BCR/ABL NEG NEG NEG NEG BCR/ABL BCR/ABL
#> [49] NEG NEG NEG NEG BCR/ABL NEG NEG NEG
#> [57] NEG NEG BCR/ABL BCR/ABL NEG NEG BCR/ABL BCR/ABL
#> [65] NEG NEG NEG NEG BCR/ABL NEG BCR/ABL BCR/ABL
#> [73] BCR/ABL NEG NEG BCR/ABL NEG BCR/ABL BCR/ABL NEG
#> [81] NEG NEG NEG NEG NEG NEG NEG NEG
#> [89] NEG NEG NEG NEG NEG NEG NEG NEG
#> [97] NEG NEG NEG NEG NEG NEG NEG NEG
#> [105] NEG NEG NEG NEG NEG NEG NEG
#> Levels: BCR/ABL NEG

We can then update the mol.biol column of bcrabl by assigning new values to it with <-.
bcrabl$mol.biol <- factor(bcrabl$mol.biol)
table(bcrabl$mol.biol)
#>
#> BCR/ABL NEG
#> 37 74

Exploratory data analysis

A very useful concept in R is the formula. This is specified in a form like lhs ~ rhs. The left-hand side is
typically a response (dependent) variable, and the right-hand side a description of the independent variables
that one is interested in. I ‘say’ a formula like age ~ mol.biol as “age as a function of mol.biol”.

To get a sense of the use of formulas in R, and the ease with which one can explore data, use the boxplot()
function to visualize the relationship between age as a function of molecular biology.
boxplot(age ~ mol.biol, bcrabl)
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Consult the help page ?boxplot to figure out how to add “Age” as the y-axis label.

The boxplot suggests that in our sample individuals with BCR/ABL are on average older than individuals
classified as NEG. Confirm this using t.test().
t.test(age ~ mol.biol, bcrabl)
#>
#> Welch Two Sample t-test
#>
#> data: age by mol.biol
#> t = 4.8172, df = 68.529, p-value = 8.401e-06
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> 7.13507 17.22408
#> sample estimates:
#> mean in group BCR/ABL mean in group NEG
#> 40.25000 28.07042

It might be surprising that the df (degrees of freedom) are not a round number, but 68.592. This is because
by default R performs a t-test that allows for variances to differ between groups. Consult the ?t.test help
page to figure out to perform a simpler form of the t-test, where variances are equal.

2.2.4 Writing R scripts

2.2.5 Using packages

R functions are made available in packages. All the functions that we have used so far are implemented in
packages that are distributed with R. There are actually more than 15,000 R packages available for a wide
variety of purposes. The general challenge we explore here is how to discover, install, and use one of these
packages.

Discover

The most common place to find R packages in on the comprehensive R archive network, CRAN.

Visit CRAN at https://cran.r-project.org, click on the ‘Packages’ link, and the table of available packages
sorted by name. Find the ggplot2 package and peruse the information you are presented with. What does

https://cran.r-project.org
https://cran.r-project.org/package=ggplot2
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this package do?

The large number of R packages can make finding the ‘best’ packages for a particular purpose difficult to
identify. From https://cran.r-project.org, click on the ‘Task Views’ link and explore a topic interesting to you.

Install (once only per R installation)

One useful packages have been identified, they need to be installed into R. This only needs to be done once
per R installation. The following installs the ggplot2 and tibble packages; you DO NOT need to do this
command because ggplot2 is already installed on your AMI.
## No need to do this...
install.packages(c("ggplot2", "tibble"))

Use

Packages that are installed on your system are not available for use until they are attached to the current R
session. Use library() to attach the ggplot2 package.
library("ggplot2")

Look up help on ?ggplot. Peruse especially the examples at the bottom of the help page. The idea is that
one identifies the data set to be used, and the variables with the data to be used as the x and y ‘aesthetics’
ggplot(brcabl, aes(x = mol.biol, y = age))

One then adds ‘geoms’ to the plot, for instance the boxplot geom
ggplot(bcrabl, aes(x = mol.biol, y = age)) + geom_boxplot()
#> Warning: Removed 4 rows containing non-finite values (stat_boxplot).
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Use xlab() and ylab() to enhance the plot with more meaning x and y labels; see the help page ?xlab,

https://cran.r-project.org
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=tibble
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
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especially the example section, for hints on how to modify the graph.

The grammar of graphics implemented by ggplot2 is a very powerful and expressive system for producing
appealing visualizations, and is widely used in the R community.

2.3 Introduction to Bioconductor

Bioconductor is a collection of more than 1,500 packages for the statistical analysis and comprehension of
high-throughput genomic data. Originally developed for microarrays, Bioconductor packages are now used in
a wide range of analyses, including bulk and single-cell RNA-seq, ChIP seq, copy number analysis, microarray
methylation and classic expression analysis, flow cytometry, and many other domains.

This section of the workshop introduces the essential of Bioconductor package discovery, installation, and use.

2.3.1 Discovering, installing, and learning how to use Bioconductor packages

Discovery

The web site at https://bioconductor.org contains descriptions of all Bioconductor packages, as well as
essential reference material for all levels of user.

Packages available in Bioconductor are summarized at https://bioconductor.org/packages, also linked from
the front page of the web site. The widget on the left summarizes four distinct types of Bioconductor packages

• ‘Software’ packages implement particular analyses or other functionality, e.g., querying web-based
resources or importing common file formats to Bioconductor objects.

• ‘Annotation’ packages contain data that can be helpful in placing analysis results in context, for example:
mapping between gene symbols such as “BRCA1” and Ensembl or Entrez gene identifiers; classifying
genes in terms of gene ontology; describing the genomic coordinates of exons, transcripts, and genes;
and representing whole genome sequences of common organisms.

• ‘Experiment data’ packages contain highly curated data sets that can be useful for learning and
teaching (e.g., the airway package and data set used in the DESeq2 package for the analysis of bulk
RNA-seq differential expression) or placing results in context (e.g., the curatedTCGAData package for
conveniently accessing TCGA data in a way that allows very smooth integeration into Bioconductor
analyses).

• ‘Workflow’ packages that summarize common work flows, e.g., simpleSingleCell for single-cell RNA-seq
expression analysis.

Installation

Like CRAN packages, Bioconductor packages need to be installed only once per R installation, and then
attached to each session where they are going to be used.

Bioconductor packages are installed slightly differently from CRAN packages. The first step is to install the
BiocManager package from CRAN.
if (!"BiocManager" %in% rownames(intalled.packages()))

install.packages("BiocManager", repos="https://cran.r-project.org")

The next step is to install the desired Bioconductor packages. The syntax to install the rtracklayer and
GenomicRanges packages is
BiocManager::install(c("rtracklayer", "GenomicRanges"))

https://cran.r-project.org/package=ggplot2
https://bioconductor.org
https://bioconductor.org/packages
https://bioconductor.org/packages/airway
https://bioconductor.org/packages/DESeq2
https://bioconductor.org/packages/curatedTCGAData
https://bioconductor.org/packages/simpleSingleCell
https://cran.r-project.org/package=BiocManager
https://bioconductor.org/packages/rtracklayer
https://bioconductor.org/packages/GenomicRanges
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Bioconductor packages tend to depend on one another quite alot, so it is important that the correct versions
of all packages are installed. Validate your installation (not necessary during the course) with
BiocManager::valid()

A convenient function in BiocManager is available(), which accepts a regular expression to find matching
packages. The following finds all ‘TxDb’ packages (describing exon, transcript, and gene coordinates) for
Homo sapiens.
BiocManager::available("TxDb.Hsapiens")
#> [1] "TxDb.Hsapiens.BioMart.igis"
#> [2] "TxDb.Hsapiens.UCSC.hg18.knownGene"
#> [3] "TxDb.Hsapiens.UCSC.hg19.knownGene"
#> [4] "TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts"
#> [5] "TxDb.Hsapiens.UCSC.hg38.knownGene"

Learning and support

Each package is linked to a ‘landing page’, e.g., DESeq2 that contains a description of the package, authors,
perhaps literature citations where the software is described, and installation instructions.

An important part of Bioconductor packages are ‘vignettes’ which describe how the package is to be used.
Vignettes are linked from package landing pages, and are available from within R using
browseVignettes("simpleSingleCell")

Users can get support on using packages at https://support.bioconductor.org, a question-and-answer style
forum where response usually come quickly and often from very knowledgable users or the package developer.
There are many additional sources of support, including course material linked from the home page.

2.3.2 Working with Genomic Ranges

This section introduces two useful packages for general-purpose work on genomic coordinates. The rtracklayer
package provides the import() function to read many types of genomic files (e.g., BED, GTF, VCF, FASTA)
into Bioconductor objects. The GenomicRanges package provides functions for manipulating genomic ranges,
i.e., descriptions of exons, genes, ChIP peaks, called variants, . . . as coordinates in genome space.

Start by attaching the rtracklayer and GenomicRanges packages to our session.
library("rtracklayer")
library("GenomicRanges")

Importing data

We’ll read in a BED file derived from the UCSC genome browser. The file contains the coordinates of all
CpG islands in the human genome, and is described at the UCSC table browser. Here are the first few lines
of the file, giving the chromosme, start and end coordinates, and identifier of each CpG island.

chr1 155188536 155192004 CpG:_361
chr1 2226773 2229734 CpG:_366
chr1 36306229 36307408 CpG:_110
chr1 47708822 47710847 CpG:_164
chr1 53737729 53739637 CpG:_221
chr1 144179071 144179313 CpG:_20

Use file.choose() to find the file
fname <- file.choose() # CpGislands.Hsapiens.hg38.UCSC.bed

https://cran.r-project.org/package=BiocManager
https://bioconductor.org/packages/DESeq2
https://support.bioconductor.org
https://bioconductor.org/help/course-materials
https://bioconductor.org/packages/rtracklayer
https://bioconductor.org/packages/GenomicRanges
https://bioconductor.org/packages/rtracklayer
https://bioconductor.org/packages/GenomicRanges
https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=578954849_wF1QP81SIHdfr8b0kmZUOcsZcHYr&clade=mammal&org=Human&db=hg38&hgta_group=regulation&hgta_track=knownGene&hgta_table=0&hgta_regionType=genome&position=chr9%3A133252000-133280861&hgta_outputType=primaryTable&hgta_outFileName=
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fname
#> [1] "100_Morgan_RBiocForAll/CpGislands.Hsapiens.hg38.UCSC.bed"
file.exists(fname)
#> [1] TRUE

Then use import() from rtracklayer to read the data into R. The end result is a GenomicRanges object
describing each CpG island.
cpg <- import(fname)
cpg
#> GRanges object with 30477 ranges and 1 metadata column:
#> seqnames ranges strand | name
#> <Rle> <IRanges> <Rle> | <character>
#> [1] chr1 155188537-155192004 * | CpG:_361
#> [2] chr1 2226774-2229734 * | CpG:_366
#> [3] chr1 36306230-36307408 * | CpG:_110
#> [4] chr1 47708823-47710847 * | CpG:_164
#> [5] chr1 53737730-53739637 * | CpG:_221
#> ... ... ... ... . ...
#> [30473] chr22_KI270734v1_random 131010-132049 * | CpG:_102
#> [30474] chr22_KI270734v1_random 161257-161626 * | CpG:_55
#> [30475] chr22_KI270735v1_random 17221-18098 * | CpG:_100
#> [30476] chr22_KI270738v1_random 4413-5280 * | CpG:_80
#> [30477] chr22_KI270738v1_random 6226-6467 * | CpG:_34
#> -------
#> seqinfo: 254 sequences from an unspecified genome; no seqlengths

Closely compare the coordinates of the first few ranges from the file with the first few ranges in the Bioconductor
representation. The BED format specification says that coordinates are 0-based, and intervals are half-open
(the ‘start’ coordinate is in the range, the ‘end’ coordinate is immediately after the range; this makes some
computations easy). Bioconductor ’s convention is that coordinates are 1-based and closed (i.e., both start
and end coordinates are included in the range). rtracklayer’s import() function has adjusted coordinates to
follow Bioconductor conventions.

Working with genomic ranges

For convenience and to illustrate functionality, let’s work only with the ‘standard’ chromosomes 1 - 22
autosomal, X, and Y chromosomes. Look up the help page ?keepStandardChromosomes for an explanation
of pruning.mode=.
cpg <- keepStandardChromosomes(cpg, pruning.mode = "coarse")
cpg
#> GRanges object with 27949 ranges and 1 metadata column:
#> seqnames ranges strand | name
#> <Rle> <IRanges> <Rle> | <character>
#> [1] chr1 155188537-155192004 * | CpG:_361
#> [2] chr1 2226774-2229734 * | CpG:_366
#> [3] chr1 36306230-36307408 * | CpG:_110
#> [4] chr1 47708823-47710847 * | CpG:_164
#> [5] chr1 53737730-53739637 * | CpG:_221
#> ... ... ... ... . ...
#> [27945] chr22 50704375-50704880 * | CpG:_38
#> [27946] chr22 50710878-50711294 * | CpG:_41
#> [27947] chr22 50719959-50721632 * | CpG:_180
#> [27948] chr22 50730600-50731304 * | CpG:_65
#> [27949] chr22 50783345-50783889 * | CpG:_63

https://bioconductor.org/packages/rtracklayer
https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://bioconductor.org/packages/rtracklayer
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#> -------
#> seqinfo: 24 sequences from an unspecified genome; no seqlengths

There are two parts to a GenomicRanges object. The seqnames (chromosomes, in the present case), start
and end coordinates, and strand are required. Additional elements such as name in the current example are
optional. Required components are accessed by functions such as start(), end() and width(). Optional
components can be accessed using the $ notation.
head( start(cpg) )
#> [1] 155188537 2226774 36306230 47708823 53737730 144179072
head( cpg$name )
#> [1] "CpG:_361" "CpG:_366" "CpG:_110" "CpG:_164" "CpG:_221" "CpG:_20"

Use the width() accessor function to extract a vector of widths of each CpG island. Transform the values
using log10(), and visualize the distribution using hist().
hist(log10(width(cpg)))

Histogram of log10(width(cpg))

log10(width(cpg))
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Use subset() to select the CpG islands on chromosomes 1 and 2.
subset(cpg, seqnames %in% c("chr1", "chr2"))
#> GRanges object with 4217 ranges and 1 metadata column:
#> seqnames ranges strand | name
#> <Rle> <IRanges> <Rle> | <character>
#> [1] chr1 155188537-155192004 * | CpG:_361
#> [2] chr1 2226774-2229734 * | CpG:_366
#> [3] chr1 36306230-36307408 * | CpG:_110
#> [4] chr1 47708823-47710847 * | CpG:_164
#> [5] chr1 53737730-53739637 * | CpG:_221
#> ... ... ... ... . ...
#> [4213] chr2 242003256-242004412 * | CpG:_79
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#> [4214] chr2 242006590-242010686 * | CpG:_263
#> [4215] chr2 242045491-242045723 * | CpG:_16
#> [4216] chr2 242046615-242047706 * | CpG:_170
#> [4217] chr2 242088150-242089411 * | CpG:_149
#> -------
#> seqinfo: 24 sequences from an unspecified genome; no seqlengths

Genomic annotations

Earlier we mentioned ‘Annotation data’ packages. An example is the TxDb.* family of packages. These
packages contain information on the genomic coordinates of exons, genes, transcripts, etc. Attach the TxDb
package corresponding to the Homo sapiens hg38 genome build using the UCSC ‘knownGene’ track.
library("TxDb.Hsapiens.UCSC.hg38.knownGene")

Extract the coordinates of all transcripts
tx <- transcripts(TxDb.Hsapiens.UCSC.hg38.knownGene)
tx
#> GRanges object with 197782 ranges and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] chr1 29554-31097 + | 1 uc057aty.1
#> [2] chr1 30267-31109 + | 2 uc057atz.1
#> [3] chr1 30366-30503 + | 3 uc031tlb.1
#> [4] chr1 69091-70008 + | 4 uc001aal.1
#> [5] chr1 160446-161525 + | 5 uc057aum.1
#> ... ... ... ... . ... ...
#> [197778] chrUn_KI270750v1 148668-148843 + | 197778 uc064xrp.1
#> [197779] chrUn_KI270752v1 144-268 + | 197779 uc064xrq.1
#> [197780] chrUn_KI270752v1 21813-21944 + | 197780 uc064xrt.1
#> [197781] chrUn_KI270752v1 3497-3623 - | 197781 uc064xrr.1
#> [197782] chrUn_KI270752v1 9943-10067 - | 197782 uc064xrs.1
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

Keep only the standard chromosomes, to work smoothly with our cpg object.
tx <- keepStandardChromosomes(tx, pruning.mode="coarse")
tx
#> GRanges object with 182435 ranges and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] chr1 29554-31097 + | 1 uc057aty.1
#> [2] chr1 30267-31109 + | 2 uc057atz.1
#> [3] chr1 30366-30503 + | 3 uc031tlb.1
#> [4] chr1 69091-70008 + | 4 uc001aal.1
#> [5] chr1 160446-161525 + | 5 uc057aum.1
#> ... ... ... ... . ... ...
#> [182431] chrM 5826-5891 - | 182431 uc064xpa.1
#> [182432] chrM 7446-7514 - | 182432 uc064xpb.1
#> [182433] chrM 14149-14673 - | 182433 uc064xpm.1
#> [182434] chrM 14674-14742 - | 182434 uc022bqv.3
#> [182435] chrM 15956-16023 - | 182435 uc022bqx.2
#> -------
#> seqinfo: 25 sequences (1 circular) from hg38 genome
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Overlaps

A very useful operation is to count overlaps in two distinct genomic ranges objects. The following counts the
number of CpG islands that overlap each transcript. Related functions include findOverlaps(), nearest(),
precede(), and follow().
olaps <- countOverlaps(tx, cpg)
length(olaps) # 1 count per transcript
#> [1] 182435
table(olaps)
#> olaps
#> 0 1 2 3 4 5 6 7 8 9 10 11
#> 94621 70551 10983 3228 1317 595 351 214 153 93 64 39
#> 12 13 14 15 16 17 18 19 20 21 22 23
#> 41 31 21 20 17 8 14 8 7 3 6 6
#> 24 25 26 27 28 29 30 31 32 33 34 35
#> 3 2 4 1 3 2 6 5 3 3 1 2
#> 36 37 38 63
#> 3 1 1 4

Calculations such as countOverlaps() can be added to the GRanges object, tightly coupling derived data
with the original annotation.
tx$cpgOverlaps <- countOverlaps(tx, cpg)
tx
#> GRanges object with 182435 ranges and 3 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] chr1 29554-31097 + | 1 uc057aty.1
#> [2] chr1 30267-31109 + | 2 uc057atz.1
#> [3] chr1 30366-30503 + | 3 uc031tlb.1
#> [4] chr1 69091-70008 + | 4 uc001aal.1
#> [5] chr1 160446-161525 + | 5 uc057aum.1
#> ... ... ... ... . ... ...
#> [182431] chrM 5826-5891 - | 182431 uc064xpa.1
#> [182432] chrM 7446-7514 - | 182432 uc064xpb.1
#> [182433] chrM 14149-14673 - | 182433 uc064xpm.1
#> [182434] chrM 14674-14742 - | 182434 uc022bqv.3
#> [182435] chrM 15956-16023 - | 182435 uc022bqx.2
#> cpgOverlaps
#> <integer>
#> [1] 1
#> [2] 0
#> [3] 0
#> [4] 0
#> [5] 0
#> ... ...
#> [182431] 0
#> [182432] 0
#> [182433] 0
#> [182434] 0
#> [182435] 0
#> -------
#> seqinfo: 25 sequences (1 circular) from hg38 genome

It is then possible to perform coordinated actions, e.g., subsetting the GRanges objects for transcripts
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satisfying particular conditions, in a coordinated fashion where the software does all the book-keeping to
makes sure the correct ranges are selected.
subset(tx, cpgOverlaps > 10)
#> GRanges object with 265 ranges and 3 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] chr1 2050470-2185395 + | 213 uc001aiq.3
#> [2] chr1 2050485-2146108 + | 214 uc057bkd.1
#> [3] chr1 2073462-2185390 + | 219 uc001air.4
#> [4] chr1 2073986-2185190 + | 221 uc010nyw.3
#> [5] chr1 2104716-2185393 + | 227 uc001ais.4
#> ... ... ... ... . ... ...
#> [261] chrX 40051246-40177329 - | 179887 uc004deo.4
#> [262] chrX 40051248-40177329 - | 179889 uc004dep.5
#> [263] chrX 40062955-40177320 - | 179892 uc064yov.1
#> [264] chrY 333963-386710 - | 182211 uc004fot.4
#> [265] chrY 344896-386955 - | 182217 uc011nah.3
#> cpgOverlaps
#> <integer>
#> [1] 15
#> [2] 11
#> [3] 13
#> [4] 13
#> [5] 11
#> ... ...
#> [261] 11
#> [262] 11
#> [263] 11
#> [264] 14
#> [265] 12
#> -------
#> seqinfo: 25 sequences (1 circular) from hg38 genome

Can you think of other situations where one might calculate derived values and couple these with GRanges or
similar objects?

2.3.3 Working with summarized experimental data

This section introduces another broadly useful package and data structure, the SummarizedExperiment
package and SummarizedExperiment object.

The SummarizedExperiment object has matrix-like properties – it has two dimensions and can be subset
by ‘rows’ and ‘columns’. The assay() data of a SummarizedExperiment experiment contains one or more
matrix-like objects where rows represent features of interest (e.g., genes), columns represent samples, and
elements of the matrix represent results of a genomic assay (e.g., counts of reads overlaps genes in each
sample of an bulk RNA-seq differential expression assay.

Object construction

The SummarizedExperiment coordinates assays with (optional) descriptions of rows and columns. We start by
reading in a simple data.frame describing 8 samples from an RNASeq experiment looking at dexamethasone
treatment across 4 human smooth muscle cell lines; use browseVignettes("airway") for a more complete
description of the experiment and data processing. Read the column data in using file.choose() and
read.csv().

https://bioconductor.org/packages/SummarizedExperiment
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Figure 2.2:
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fname <- file.choose() # airway_colData.csv
fname

We want the first column the the data to be treated as row names (sample identifiers) in the data.frame, so
read.csv() has an extra argument to indicate this.
colData <- read.csv(fname, row.names = 1)
colData
#> SampleName cell dex albut Run avgLength Experiment
#> SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345
#> SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346
#> SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126 SRX384349
#> SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350
#> SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120 SRX384353
#> SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126 SRX384354
#> SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101 SRX384357
#> SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98 SRX384358
#> Sample BioSample
#> SRR1039508 SRS508568 SAMN02422669
#> SRR1039509 SRS508567 SAMN02422675
#> SRR1039512 SRS508571 SAMN02422678
#> SRR1039513 SRS508572 SAMN02422670
#> SRR1039516 SRS508575 SAMN02422682
#> SRR1039517 SRS508576 SAMN02422673
#> SRR1039520 SRS508579 SAMN02422683
#> SRR1039521 SRS508580 SAMN02422677

The data are from the Short Read Archive, and the row names, SampleName, Run, Experiment, Sampel, and
BioSample columns are classifications from the archive. Additional columns include:

• cell: the cell line used. There are four cell lines.
• dex: whether the sample was untreated, or treated with dexamethasone.
• albut: a second treatment, which we ignore
• avgLength: the sample-specific average length of the RNAseq reads estimated in the experiment.

Assay data

Now import the assay data from the file “airway_counts.csv”
fname <- file.choose() # airway_counts.csv
fname

counts <- read.csv(fname, row.names=1)

Although the data are read as a data.frame, all columns are of the same type (integer-valued) and represent
the same attribute; the data is really a matrix rather than data.frame, so we coerce to matrix using
as.matrix().
counts <- as.matrix(counts)

We see the dimensions and first few rows of the counts matrix
dim(counts)
#> [1] 33469 8
head(counts)
#> SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516
#> ENSG00000000003 679 448 873 408 1138
#> ENSG00000000419 467 515 621 365 587
#> ENSG00000000457 260 211 263 164 245



2.3. INTRODUCTION TO BIOCONDUCTOR 29

#> ENSG00000000460 60 55 40 35 78
#> ENSG00000000938 0 0 2 0 1
#> ENSG00000000971 3251 3679 6177 4252 6721
#> SRR1039517 SRR1039520 SRR1039521
#> ENSG00000000003 1047 770 572
#> ENSG00000000419 799 417 508
#> ENSG00000000457 331 233 229
#> ENSG00000000460 63 76 60
#> ENSG00000000938 0 0 0
#> ENSG00000000971 11027 5176 7995

It’s interesting to think about what the counts mean – for ENSG00000000003, sample SRR1039508 had 679
reads that overlapped this gene, sample SRR1039509 had 448 reads, etc. Notice that for this gene there
seems to be a consistent pattern – within a cell line, the read counts in the untreated group are always larger
than the read counts for the treated group. This and other basic observations from ‘looking at’ the data
motivate many steps in a rigorous RNASeq differential expression analysis.

Creating a SummarizedExperiment object

We saw earlier that there was considerable value in tightly coupling the count of CpG islands overlapping
each transcript with the GRanges describing the transcripts. We can anticipate that close coupling of the
column data with the assay data will have similar benefits, e.g., reducing the chances of bookkeeping errors
as we work with our data.

Attach the SummarizedExperiment library to our R session.
library("SummarizedExperiment")

Use the SummarizedExperiment() function to coordinate the assay and column data; this function uses row
and column names to make sure the correct assay columns are desribed by the correct column data rows.
se <- SummarizedExperiment(assay = counts, colData = colData)
se
#> class: SummarizedExperiment
#> dim: 33469 8
#> metadata(0):
#> assays(1): ''
#> rownames(33469): ENSG00000000003 ENSG00000000419 ...
#> ENSG00000273492 ENSG00000273493
#> rowData names(0):
#> colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
#> colData names(9): SampleName cell ... Sample BioSample

It is straight-forward to use subset() on SummarizedExperiment to create subsets of the data in a coordinated
way. Remember that a SummarizedExperiment is conceptually two-dimensional (matrix-like), and in the
example below we are subsetting on the second dimension.
subset(se, , dex == "trt")
#> class: SummarizedExperiment
#> dim: 33469 4
#> metadata(0):
#> assays(1): ''
#> rownames(33469): ENSG00000000003 ENSG00000000419 ...
#> ENSG00000273492 ENSG00000273493
#> rowData names(0):
#> colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
#> colData names(9): SampleName cell ... Sample BioSample

https://bioconductor.org/packages/SummarizedExperiment
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As with GRanges, there are accessors that extract data from the SummarizedExperiment. For instance, we
can use assay() to extract the count matrix, and colSums() to calculate the library size (total number of
reads overlapping genes in each sample).
colSums(assay(se))
#> SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
#> 20637971 18809481 25348649 15163415 24448408 30818215
#> SRR1039520 SRR1039521
#> 19126151 21164133

Note that library sizes differ by a factor of 2 from largest to smallest; how would this influence the interpretation
of counts in individual cells of the assay data?

As with GRanges, it might be useful to remember important computations in a way that is robust, e.g.,
se$lib.size <- colSums(assay(se))
colData(se)
#> DataFrame with 8 rows and 10 columns
#> SampleName cell dex albut Run avgLength
#> <factor> <factor> <factor> <factor> <factor> <integer>
#> SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126
#> SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126
#> SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126
#> SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87
#> SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120
#> SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126
#> SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101
#> SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98
#> Experiment Sample BioSample lib.size
#> <factor> <factor> <factor> <numeric>
#> SRR1039508 SRX384345 SRS508568 SAMN02422669 20637971
#> SRR1039509 SRX384346 SRS508567 SAMN02422675 18809481
#> SRR1039512 SRX384349 SRS508571 SAMN02422678 25348649
#> SRR1039513 SRX384350 SRS508572 SAMN02422670 15163415
#> SRR1039516 SRX384353 SRS508575 SAMN02422682 24448408
#> SRR1039517 SRX384354 SRS508576 SAMN02422673 30818215
#> SRR1039520 SRX384357 SRS508579 SAMN02422683 19126151
#> SRR1039521 SRX384358 SRS508580 SAMN02422677 21164133

2.3.4 Down-stream analysis

In this final section we quickly hint at down-stream analysis, and the way in which skills learned in working
with Bioconductor objects in one package translate to working with objects in other packages.

We start by loading the DESeq2 package, a very popular facility for analysing bulk RNAseq differential
experssion data.
library("DESeq2")

The package requires count data like that in the SummarizedExperiment we have been working with, in
addition to a formula describing the experimental design. Some of the observations above suggest that we
should include cell line as a covariate, and dexamethazone treatment as the main factor that we are interested
in.
dds <- DESeqDataSet(se, design = ~ cell + dex)
#> renaming the first element in assays to 'counts'

https://bioconductor.org/packages/DESeq2
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dds
#> class: DESeqDataSet
#> dim: 33469 8
#> metadata(1): version
#> assays(1): counts
#> rownames(33469): ENSG00000000003 ENSG00000000419 ...
#> ENSG00000273492 ENSG00000273493
#> rowData names(0):
#> colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
#> colData names(10): SampleName cell ... BioSample lib.size

The dds object can be manipulated very much like a SummarizedExperiment.

The essention DESeq work flow is summarized by a single function call, which performs advanced statistical
analysis on the data in the dds object.
dds <- DESeq(dds)
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing

A table summarizing measures of differential expression can be extracted from the object, and visualized or
manipulated using commands we learned earlier today.
results(dds)
#> log2 fold change (MLE): dex untrt vs trt
#> Wald test p-value: dex untrt vs trt
#> DataFrame with 33469 rows and 6 columns
#> baseMean log2FoldChange lfcSE
#> <numeric> <numeric> <numeric>
#> ENSG00000000003 708.602169691234 0.381253982523047 0.100654411865821
#> ENSG00000000419 520.297900552084 -0.206812601085051 0.112218646507256
#> ENSG00000000457 237.163036796015 -0.037920431205081 0.143444654934088
#> ENSG00000000460 57.9326331250967 0.0881681758701336 0.287141822937769
#> ENSG00000000938 0.318098378392895 1.37822703433213 3.49987280259267
#> ... ... ... ...
#> ENSG00000273487 8.1632349843654 -1.04640654119647 0.698966822033151
#> ENSG00000273488 8.58447903624707 -0.107830154768606 0.638099034888812
#> ENSG00000273489 0.275899382507797 -1.48373838425916 3.51394583815493
#> ENSG00000273492 0.105978355992386 0.463679009985687 3.52308267589304
#> ENSG00000273493 0.106141666408122 0.521354507611989 3.53139024554344
#> stat pvalue
#> <numeric> <numeric>
#> ENSG00000000003 3.78775232457058 0.000152016273044953
#> ENSG00000000419 -1.84294328546976 0.0653372915097615
#> ENSG00000000457 -0.264355832725208 0.79150574160836
#> ENSG00000000460 0.307054454722334 0.758801923982929
#> ENSG00000000938 0.393793463954221 0.693733530342183
#> ... ... ...
#> ENSG00000273487 -1.49707612466166 0.134373451371486
#> ENSG00000273488 -0.168986550477068 0.865807220420437
#> ENSG00000273489 -0.422242815511986 0.672847792938571
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#> ENSG00000273492 0.131611731157615 0.895291406125436
#> ENSG00000273493 0.147634351165219 0.882631343839791
#> padj
#> <numeric>
#> ENSG00000000003 0.00127423101752341
#> ENSG00000000419 0.195433088560704
#> ENSG00000000457 0.910602138773154
#> ENSG00000000460 0.893977566267183
#> ENSG00000000938 NA
#> ... ...
#> ENSG00000273487 0.327756206316493
#> ENSG00000273488 0.944617232242564
#> ENSG00000273489 NA
#> ENSG00000273492 NA
#> ENSG00000273493 NA

2.4 Summary



Chapter 3

101: Introduction to Bioconductor
annotation resources

3.1 Instructors

• James W. MacDonald (jmacdon@uw.edu)
• Lori Shepherd (lori.shepherd@roswellpark.org)

3.2 Workshop Description

There are various annotation packages provided by the Bioconductor project that can be used to incorporate
additional information to results from high-throughput experiments. This can be as simple as mapping
Ensembl IDs to corresponding HUGO gene symbols, to much more complex queries involving multiple data
sources. In this workshop we will cover the various classes of annotation packages, what they contain, and
how to use them efficiently.

3.2.1 Prerequisites

• Basic knowledge of R syntax
• Basic understanding of the various annotation sources (NCBI, EBI/EMBL)

Useful background reading

• The AnnotationDbi vignette.
• The biomaRt vignette.
• The GenomicFeatures vignette.

3.2.2 Workshop Participation

After each type of annotation package is introduced, students will be given the opportunity to practice
making their own queries.
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mailto:jmacdon@uw.edu
mailto:lori.shepherd@roswellpark.org
https://www.bioconductor.org/packages/release/bioc/vignettes/AnnotationDbi/inst/doc/IntroToAnnotationPackages.pdf
https://www.bioconductor.org/packages/release/bioc/vignettes/biomaRt/inst/doc/biomaRt.html
https://www.bioconductor.org/packages/release/bioc/vignettes/GenomicFeatures/inst/doc/GenomicFeatures.pdf
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3.2.3 R / Bioconductor packages used

• AnnotationDbi
• AnnotationHub
• BSgenome
• biomaRt
• ensembldb
• org.Hs.eg.db
• TxDb.Hsapiens.UCSC.hg19.knownGene
• EnsDb.Hsapiens.v79
• EnsDb.Mmusculus.v79
• Homo.sapiens
• BSgenome.Hsapiens.UCSC.hg19
• hugene20sttranscriptcluster.db

3.3 Workshop goals and objectives

Annotating data is a complex task. For any high-throughput experiment the analyst usually starts with a set
of identifiers for each thing that was measured, and in order to make the results useful to collaborators these
identifiers need to be mapped to other identifiers that are either more familiar to collaborators, or that can
be used for further analyses. As an example, RNA-Seq data may only have Entrez Gene IDs for each gene
measured, and as part of the output you may want to include the gene symbols, which are more likely to be
familiar to a Biologist.

3.3.1 Learning goals

• Understand what sort of annotation data are available
• Understand the difference between annotation sources (NCBI and EBI/EMBL)
• Gain familiarity with the various ways to query annotation packages
• Get some practice making queries

3.3.2 Learning objectives

• Be able to use select and mapIds to map between identifiers
• Be able to extract data from TxDb and EnsDb packages
• Be able to make queries using biomaRt
• Extract and utilize various data from AnnotationHub

3.4 Annotation Workshop

3.4.1 Goals for this workshop

• Learn about various annotation package types

• Learn the basics of querying these resources

• Discuss annotations in regard to Bioc data structures

• Get in some practice
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3.4.2 What do we mean by annotation?

Map a known ID to other functional or positional information

3.4.3 Specific goal

We have data and statistics, and we want to add other useful information
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The end result might be as simple as a data.frame or HTML table, or as complex as a RangedSummarizedExperiment

3.4.4 Data containers

3.4.5 ExpressionSet

load(system.file("extdata/eset.Rdata", package = "Bioc2018Anno"))
eset
#> ExpressionSet (storageMode: lockedEnvironment)
#> assayData: 33552 features, 6 samples
#> element names: exprs
#> protocolData: none
#> phenoData
#> sampleNames: GSM2194079 GSM2194080 ... GSM2194084 (6 total)
#> varLabels: title characteristics_ch1.1
#> varMetadata: labelDescription
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#> featureData
#> featureNames: 16657436 16657440 ... 17118478 (33552 total)
#> fvarLabels: PROBEID ENTREZID SYMBOL GENENAME
#> fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#> Annotation: pd.hugene.2.0.st

3.4.6 ExpressionSet (continued)

head(exprs(eset))
#> GSM2194079 GSM2194080 GSM2194081 GSM2194082 GSM2194083 GSM2194084
#> 16657436 8.505158 9.046577 8.382674 9.115481 8.715343 8.566301
#> 16657440 7.948860 8.191222 7.901911 8.459781 8.191793 8.219658
#> 16657450 10.932934 11.228553 10.948120 11.462231 11.300046 11.300886
#> 16657469 9.172462 9.344630 9.193450 9.465584 9.464020 9.135715
#> 16657473 6.222049 6.551035 6.000246 6.398798 5.892654 5.592125
#> 16657476 8.514300 8.474073 8.407196 8.811238 8.780833 8.874606
head(pData(phenoData(eset)))
#> title characteristics_ch1.1
#> GSM2194079 SW620-miR625-rep1 shRNA: miR-625-3p
#> GSM2194080 SW620-miR625-rep2 shRNA: miR-625-3p
#> GSM2194081 SW620-miR625-rep3 shRNA: miR-625-3p
#> GSM2194082 SW620-scramble-rep1 shRNA: scramble
#> GSM2194083 SW620-scramble-rep2 shRNA: scramble
#> GSM2194084 SW620-scramble-rep3 shRNA: scramble

3.4.7 ExpressionSet (continued)

head(pData(featureData(eset)))
#> PROBEID ENTREZID SYMBOL
#> 16657436 16657436 84771 DDX11L2
#> 16657440 16657440 100302278 MIR1302-2
#> 16657450 16657450 402483 LINC01000
#> 16657469 16657469 140849 LINC00266-1
#> 16657473 16657473 729759 OR4F29
#> 16657476 16657476 388574 RPL23AP87
#> GENENAME
#> 16657436 DEAD/H-box helicase 11 like 2
#> 16657440 microRNA 1302-2
#> 16657450 long intergenic non-protein coding RNA 1000
#> 16657469 long intergenic non-protein coding RNA 266-1
#> 16657473 olfactory receptor family 4 subfamily F member 29
#> 16657476 ribosomal protein L23a pseudogene 87
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3.4.8 BioC containers vs basic structures

3.4.8.1 Pros

• Validity checking

• Subsetting

• Function dispatch

• Automatic behaviors

3.4.8.2 Cons

• Difficult to create

• Cumbersome to extract data by hand

• Useful only within R

3.4.9 Annotation sources

Package type Example
ChipDb hugene20sttranscriptcluster.db
OrgDb org.Hs.eg.db
TxDb/EnsDb TxDb.Hsapiens.UCSC.hg19.knownGene; EnsDb.Hsapiens.v75
OrganismDb Homo.sapiens
BSgenome BSgenome.Hsapiens.UCSC.hg19
Others GO.db; KEGG.db
AnnotationHub Online resource
biomaRt Online resource

3.4.10 Interacting with AnnoDb packages

The main function is select:

select(annopkg, keys, columns, keytype)

Where

• annopkg is the annotation package

• keys are the IDs that we know

• columns are the values we want

• keytype is the type of key used

– if the keytype is the central key, it can remain unspecified

3.4.11 Simple example

Say we have analyzed data from an Affymetrix Human Gene ST 2.0 array and want to know what the genes
are. For purposes of this lab, we just select some IDs at random.
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library(hugene20sttranscriptcluster.db)
set.seed(12345)
ids <- featureNames(eset)[sample(1:25000, 5)]
ids
#> [1] "16908472" "16962185" "16920686" "16965513" "16819952"
select(hugene20sttranscriptcluster.db, ids, "SYMBOL")
#> 'select()' returned 1:1 mapping between keys and columns
#> PROBEID SYMBOL
#> 1 16908472 LINC01494
#> 2 16962185 ALG3
#> 3 16920686 <NA>
#> 4 16965513 <NA>
#> 5 16819952 CBFB

3.4.12 Questions!

How do you know what the central keys are?

• If it’s a ChipDb, the central key are the manufacturer’s probe IDs

• It’s sometimes in the name - org.Hs.eg.db, where ‘eg’ means Entrez Gene ID

• You can see examples using e.g., head(keys(annopkg)), and infer from that

• But note that it’s never necessary to know the central key, as long as you specify the keytype

3.4.13 More questions!

What keytypes or columns are available for a given annotation package?

keytypes(hugene20sttranscriptcluster.db)
#> [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT"
#> [5] "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"
#> [9] "EVIDENCEALL" "GENENAME" "GO" "GOALL"
#> [13] "IPI" "MAP" "OMIM" "ONTOLOGY"
#> [17] "ONTOLOGYALL" "PATH" "PFAM" "PMID"
#> [21] "PROBEID" "PROSITE" "REFSEQ" "SYMBOL"
#> [25] "UCSCKG" "UNIGENE" "UNIPROT"
columns(hugene20sttranscriptcluster.db)
#> [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT"
#> [5] "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"
#> [9] "EVIDENCEALL" "GENENAME" "GO" "GOALL"
#> [13] "IPI" "MAP" "OMIM" "ONTOLOGY"
#> [17] "ONTOLOGYALL" "PATH" "PFAM" "PMID"
#> [21] "PROBEID" "PROSITE" "REFSEQ" "SYMBOL"
#> [25] "UCSCKG" "UNIGENE" "UNIPROT"

3.4.14 Another example

There is one issue with select however.
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ids <- c('16737401','16657436' ,'16678303')
select(hugene20sttranscriptcluster.db, ids, c("SYMBOL","MAP"))
#> 'select()' returned 1:many mapping between keys and columns
#> PROBEID SYMBOL MAP
#> 1 16737401 TRAF6 11p12
#> 2 16657436 DDX11L1 1p36.33
#> 3 16657436 LOC102725121 1p36.33
#> 4 16657436 DDX11L2 2q14.1
#> 5 16657436 DDX11L9 15q26.3
#> 6 16657436 DDX11L10 16p13.3
#> 7 16657436 DDX11L5 9p24.3
#> 8 16657436 DDX11L16 Xq28
#> 9 16657436 DDX11L16 Yq12
#> 10 16678303 ARF1 1q42.13

3.4.15 The mapIds function

An alternative to select is mapIds, which gives control of duplicates

• Same arguments as select with slight differences

– The columns argument can only specify one column

– The keytype argument must be specified

– An additional argument, multiVals used to control duplicates

mapIds(hugene20sttranscriptcluster.db, ids, "SYMBOL", "PROBEID")
#> 'select()' returned 1:many mapping between keys and columns
#> 16737401 16657436 16678303
#> "TRAF6" "DDX11L1" "ARF1"

3.4.16 Choices for multiVals

Default is first, where we just choose the first of the duplicates. Other choices are list, CharacterList,
filter, asNA or a user-specified function.

mapIds(hugene20sttranscriptcluster.db, ids, "SYMBOL", "PROBEID", multiVals = "list")
#> 'select()' returned 1:many mapping between keys and columns
#> $`16737401`
#> [1] "TRAF6"
#>
#> $`16657436`
#> [1] "DDX11L1" "LOC102725121" "DDX11L2" "DDX11L9"
#> [5] "DDX11L10" "DDX11L5" "DDX11L16"
#>
#> $`16678303`
#> [1] "ARF1"
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3.4.17 Choices for multiVals (continued)

mapIds(hugene20sttranscriptcluster.db, ids, "SYMBOL", "PROBEID", multiVals = "CharacterList")
#> 'select()' returned 1:many mapping between keys and columns
#> CharacterList of length 3
#> [["16737401"]] TRAF6
#> [["16657436"]] DDX11L1 LOC102725121 DDX11L2 DDX11L9 DDX11L10 DDX11L5 DDX11L16
#> [["16678303"]] ARF1
mapIds(hugene20sttranscriptcluster.db, ids, "SYMBOL", "PROBEID", multiVals = "filter")
#> 'select()' returned 1:many mapping between keys and columns
#> 16737401 16678303
#> "TRAF6" "ARF1"
mapIds(hugene20sttranscriptcluster.db, ids, "SYMBOL", "PROBEID", multiVals = "asNA")
#> 'select()' returned 1:many mapping between keys and columns
#> 16737401 16657436 16678303
#> "TRAF6" NA "ARF1"

3.4.18 ChipDb/OrgDb questions

Using either the hugene20sttranscriptcluster.db or org.Hs.eg.db package,

• What gene symbol corresponds to Entrez Gene ID 1000?

• What is the Ensembl Gene ID for PPARG?

• What is the UniProt ID for GAPDH?

• How many of the probesets from the ExpressionSet (eset) we loaded map to a single gene? How many
don’t map to a gene at all?

3.4.19 TxDb packages

TxDb packages contain positional information; the contents can be inferred by the package name

TxDb.Species.Source.Build.Table

• TxDb.Hsapiens.UCSC.hg19.knownGene

– Homo sapiens

– UCSC genome browser

– hg19 (their version of GRCh37)

– knownGene table

TxDb.Dmelanogaster.UCSC.dm3.ensGene TxDb.Athaliana.BioMart.plantsmart22

3.4.20 EnsDb packages

EnsDb packages are similar to TxDb packages, but based on Ensembl mappings

EnsDb.Hsapiens.v79 EnsDb.Mmusculus.v79 EnsDb.Rnorvegicus.v79
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3.4.21 Transcript packages

As with ChipDb and OrgDb packages, select and mapIds can be used to make queries

select(TxDb.Hsapiens.UCSC.hg19.knownGene, c("1","10"),
c("TXNAME","TXCHROM","TXSTART","TXEND"), "GENEID")

#> 'select()' returned 1:many mapping between keys and columns
#> GENEID TXNAME TXCHROM TXSTART TXEND
#> 1 1 uc002qsd.4 chr19 58858172 58864865
#> 2 1 uc002qsf.2 chr19 58859832 58874214
#> 3 10 uc003wyw.1 chr8 18248755 18258723
select(EnsDb.Hsapiens.v79, c("1", "10"),

c("GENEID","GENENAME","SEQNAME","GENESEQSTART","GENESEQEND"), "ENTREZID")
#> ENTREZID GENEID GENENAME SEQNAME GENESEQSTART GENESEQEND
#> 1 1 ENSG00000121410 A1BG 19 58345178 58353499
#> 2 10 ENSG00000156006 NAT2 8 18391245 18401218

But this is not how one normally uses them. . .

3.4.22 GRanges

The normal use case for transcript packages is to extract positional information into a GRanges or GRangesList
object. An example is the genomic position of all genes:

gns <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
gns
#> GRanges object with 23056 ranges and 1 metadata column:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <character>
#> 1 chr19 58858172-58874214 - | 1
#> 10 chr8 18248755-18258723 + | 10
#> 100 chr20 43248163-43280376 - | 100
#> 1000 chr18 25530930-25757445 - | 1000
#> 10000 chr1 243651535-244006886 - | 10000
#> ... ... ... ... . ...
#> 9991 chr9 114979995-115095944 - | 9991
#> 9992 chr21 35736323-35743440 + | 9992
#> 9993 chr22 19023795-19109967 - | 9993
#> 9994 chr6 90539619-90584155 + | 9994
#> 9997 chr22 50961997-50964905 - | 9997
#> -------
#> seqinfo: 93 sequences (1 circular) from hg19 genome

3.4.23 GRangesList

Or the genomic position of all transcripts by gene:

txs <- transcriptsBy(TxDb.Hsapiens.UCSC.hg19.knownGene)
txs
#> GRangesList object of length 23459:
#> $1
#> GRanges object with 2 ranges and 2 metadata columns:
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#> seqnames ranges strand | tx_id tx_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] chr19 58858172-58864865 - | 70455 uc002qsd.4
#> [2] chr19 58859832-58874214 - | 70456 uc002qsf.2
#>
#> $10
#> GRanges object with 1 range and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> [1] chr8 18248755-18258723 + | 31944 uc003wyw.1
#>
#> $100
#> GRanges object with 1 range and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> [1] chr20 43248163-43280376 - | 72132 uc002xmj.3
#>
#> ...
#> <23456 more elements>
#> -------
#> seqinfo: 93 sequences (1 circular) from hg19 genome

3.4.24 Other accessors

• Positional information can be extracted for transcripts, genes, coding sequences (cds), promoters
and exons.

• Positional information can be extracted for most of the above, grouped by a second element. For
example, our transcriptsBy call was all transcripts, grouped by gene.

• More detail on these *Ranges objects is beyond the scope of this workshop, but why we want them is
not.

3.4.25 Why *Ranges objects

The main rationale for *Ranges objects is to allow us to easily select and subset data based on genomic
position information. This is really powerful!

GRanges and GRangesLists act like data.frames and lists, and can be subsetted using the [ function. As a
really artificial example:

txs[txs %over% gns[1:2,]]
#> GRangesList object of length 3:
#> $1
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] chr19 58858172-58864865 - | 70455 uc002qsd.4
#> [2] chr19 58859832-58874214 - | 70456 uc002qsf.2
#>
#> $10
#> GRanges object with 1 range and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> [1] chr8 18248755-18258723 + | 31944 uc003wyw.1
#>
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#> $162968
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> [1] chr19 58865723-58874214 - | 70457 uc002qsh.2
#> [2] chr19 58865723-58874214 - | 70458 uc002qsi.2
#>
#> -------
#> seqinfo: 93 sequences (1 circular) from hg19 genome

3.4.26 *Ranges use cases

• Gene expression changes near differentially methylated CpG islands

• Closest genes to a set of interesting SNPs

• Genes near DNAseI hypersensitivity clusters

• Number of CpGs measured over Gene X by Chip Y

3.4.27 SummarizedExperiment objects

SummarizedExperiment objects are like ExpressionSets, but the row-wise annotations are GRanges, so you
can subset by genomic locations:

SummarizedExperiment objects are popular objects for representing expression data and other rectangular
data (feature x sample data). Incoming packages are now strongly recommended to use this class representation
instead of ExpressionSet.

3.4.28 TxDb exercises

• How many transcripts does PPARG have, according to UCSC?

• Does Ensembl agree?

• How many genes are between 2858473 and 3271812 on chr2 in the hg19 genome?

– Hint: you make a GRanges like this - GRanges("chr2", IRanges(2858473,3271812))
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3.4.29 OrganismDb packages

OrganismDb packages are meta-packages that contain an OrgDb, a TxDb, and a GO.db package and allow
cross-queries between those packages.

All previous accessors work; select, mapIds, transcripts, etc.

library(Homo.sapiens)
Homo.sapiens
#> OrganismDb Object:
#> # Includes GODb Object: GO.db
#> # With data about: Gene Ontology
#> # Includes OrgDb Object: org.Hs.eg.db
#> # Gene data about: Homo sapiens
#> # Taxonomy Id: 9606
#> # Includes TxDb Object: TxDb.Hsapiens.UCSC.hg19.knownGene
#> # Transcriptome data about: Homo sapiens
#> # Based on genome: hg19
#> # The OrgDb gene id ENTREZID is mapped to the TxDb gene id GENEID .

3.4.30 OrganismDb packages

• Updateable - can change TxDb object

• columns and keytypes span all underlying objects

• Calls to TxDb accessors include a ‘columns’ argument

head(genes(Homo.sapiens, columns = c("ENTREZID","ALIAS","UNIPROT")),4)
#> 'select()' returned 1:many mapping between keys and columns
#> GRanges object with 4 ranges and 3 metadata columns:
#> seqnames ranges strand | ALIAS
#> <Rle> <IRanges> <Rle> | <CharacterList>
#> 1 chr19 58858172-58874214 - | A1B,ABG,GAB,...
#> 10 chr8 18248755-18258723 + | AAC2,NAT-2,PNAT,...
#> 100 chr20 43248163-43280376 - | ADA
#> 1000 chr18 25530930-25757445 - | CD325,CDHN,CDw325,...
#> UNIPROT ENTREZID
#> <CharacterList> <FactorList>
#> 1 P04217,V9HWD8 1
#> 10 A4Z6T7,P11245 10
#> 100 A0A0S2Z381,P00813,F5GWI4 100
#> 1000 P19022,A0A024RC42 1000
#> -------
#> seqinfo: 93 sequences (1 circular) from hg19 genome

3.4.31 OrganismDb exercises

• Get all the GO terms for BRCA1

• What gene does the UCSC transcript ID uc002fai.3 map to?

• How many other transcripts does that gene have?
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• Get all the transcripts from the hg19 genome build, along with their Ensembl gene ID, UCSC transcript
ID and gene symbol

3.4.32 Organism.dplyr package

• Combines the data from TxDb and Org.Db associated packages into local database.

• Allows functions from both org.* and TxDb.*

– keytypes(), select(), . . .
– exons(), promoters(), . . .

• Allows for filtering and display of combined TxDb and Org.Db information through dplyr functions.
library(Organism.dplyr)
#> Loading required package: dplyr
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
#> Loading required package: AnnotationFilter

# src = src_organism("TxDb.Hsapiens.UCSC.hg19.knownGene")
src <- src_organism(dbpath = hg38light())
src
#> src: sqlite 3.22.0 [/usr/local/lib/R/site-library/Organism.dplyr/extdata/light.hg38.knownGene.sqlite]
#> tbls: id, id_accession, id_go, id_go_all, id_omim_pm, id_protein,
#> id_transcript, ranges_cds, ranges_exon, ranges_gene, ranges_tx

3.4.33 Organism.dplyr

Get promoters from a TxDb object (we use a small version)

options(width = 120)
promoters(src)
#> <SQL>
#> SELECT *
#> FROM `ranges_tx`
#> GRanges object with 88 ranges and 2 metadata columns:
#> seqnames ranges strand | tx_id tx_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> uc001hzz.2 chr1 243843037-243845236 - | 15880 uc001hzz.2
#> uc021plu.1 chr1 243843385-243845584 - | 15881 uc021plu.1
#> uc001iab.3 chr1 243843083-243845282 - | 15882 uc001iab.3
#> uc057qvr.1 chr1 243849929-243852128 - | 15883 uc057qvr.1
#> uc057qvt.1 chr1 243614947-243617146 - | 15884 uc057qvt.1
#> ... ... ... ... . ... ...
#> uc064xqh.1 chrUn_GL000220v1 110025-112224 + | 197741 uc064xqh.1
#> uc064xqi.1 chrUn_GL000220v1 112151-114350 + | 197742 uc064xqi.1
#> uc064xqj.1 chrUn_GL000220v1 115428-117627 + | 197743 uc064xqj.1
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#> uc064xqk.1 chrUn_GL000220v1 116197-118396 + | 197744 uc064xqk.1
#> uc033dnj.2 chrUn_GL000220v1 153997-156196 + | 197750 uc033dnj.2
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

3.4.34 Organism.dplyr

Extract a table from the underlying database

tbl(src, "id")
#> # Source: table<id> [?? x 6]
#> # Database: sqlite 3.22.0 []
#> entrez map ensembl symbol genename alias
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 1 19q13.4 ENSG00000121410 A1BG alpha-1-B glycoprotein A1B
#> 2 1 19q13.4 ENSG00000121410 A1BG alpha-1-B glycoprotein ABG
#> 3 1 19q13.4 ENSG00000121410 A1BG alpha-1-B glycoprotein GAB
#> 4 1 19q13.4 ENSG00000121410 A1BG alpha-1-B glycoprotein HYST2477
#> 5 1 19q13.4 ENSG00000121410 A1BG alpha-1-B glycoprotein A1BG
#> 6 10 8p22 ENSG00000156006 NAT2 N-acetyltransferase 2 AAC2
#> 7 10 8p22 ENSG00000156006 NAT2 N-acetyltransferase 2 NAT-2
#> 8 10 8p22 ENSG00000156006 NAT2 N-acetyltransferase 2 PNAT
#> 9 10 8p22 ENSG00000156006 NAT2 N-acetyltransferase 2 NAT2
#> 10 100 20q13.12 ENSG00000196839 ADA adenosine deaminase ADA
#> # ... with more rows

3.4.35 Organism.dplyr

Make a complex query between tables in the underlying database

inner_join(tbl(src, "id"), tbl(src, "ranges_gene")) %>%
filter(symbol %in% c("ADA", "NAT2")) %>%
dplyr::select(gene_chrom, gene_start, gene_end,
gene_strand, symbol, alias, map)

#> Joining, by = "entrez"
#> # Source: lazy query [?? x 7]
#> # Database: sqlite 3.22.0 []
#> gene_chrom gene_start gene_end gene_strand symbol alias map
#> <chr> <int> <int> <chr> <chr> <chr> <chr>
#> 1 chr8 18391245 18401218 + NAT2 AAC2 8p22
#> 2 chr8 18391245 18401218 + NAT2 NAT-2 8p22
#> 3 chr8 18391245 18401218 + NAT2 PNAT 8p22
#> 4 chr8 18391245 18401218 + NAT2 NAT2 8p22
#> 5 chr20 44619522 44651742 - ADA ADA 20q13.12

3.4.36 Organism.dplyr exercises

• How many supported organisms are implemented in Organism.dplyr?

• Display the ensembl Id and genename description for symbol “NAT2”.
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• Show all the alias for “NAT2” in the database.

• Display Gene ontology (GO) information for gene symbol “NAT2”.

3.4.37 BSgenome packages

BSgenome packages contain sequence information for a given species/build. There are many such packages -
you can get a listing using available.genomes

library(BSgenome)
head(available.genomes())
#> [1] "BSgenome.Alyrata.JGI.v1" "BSgenome.Amellifera.BeeBase.assembly4"
#> [3] "BSgenome.Amellifera.UCSC.apiMel2" "BSgenome.Amellifera.UCSC.apiMel2.masked"
#> [5] "BSgenome.Athaliana.TAIR.04232008" "BSgenome.Athaliana.TAIR.TAIR9"

3.4.38 BSgenome packages

We can load and inspect a BSgenome package

library(BSgenome.Hsapiens.UCSC.hg19)
Hsapiens
#> Human genome:
#> # organism: Homo sapiens (Human)
#> # provider: UCSC
#> # provider version: hg19
#> # release date: Feb. 2009
#> # release name: Genome Reference Consortium GRCh37
#> # 93 sequences:
#> # chr1 chr2 chr3 chr4 chr5
#> # chr6 chr7 chr8 chr9 chr10
#> # chr11 chr12 chr13 chr14 chr15
#> # chr16 chr17 chr18 chr19 chr20
#> # chr21 chr22 chrX chrY chrM
#> # ... ... ... ... ...
#> # chrUn_gl000227 chrUn_gl000228 chrUn_gl000229 chrUn_gl000230 chrUn_gl000231
#> # chrUn_gl000232 chrUn_gl000233 chrUn_gl000234 chrUn_gl000235 chrUn_gl000236
#> # chrUn_gl000237 chrUn_gl000238 chrUn_gl000239 chrUn_gl000240 chrUn_gl000241
#> # chrUn_gl000242 chrUn_gl000243 chrUn_gl000244 chrUn_gl000245 chrUn_gl000246
#> # chrUn_gl000247 chrUn_gl000248 chrUn_gl000249
#> # (use 'seqnames()' to see all the sequence names, use the '$' or '[[' operator to access a given sequence)

3.4.39 BSgenome packages

The main accessor is getSeq, and you can get data by sequence (e.g., entire chromosome or unplaced scaffold),
or by passing in a GRanges object, to get just a region.

getSeq(Hsapiens, "chr1")
#> 249250621-letter "DNAString" instance
#> seq: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
getSeq(Hsapiens, gns["5467",])
#> A DNAStringSet instance of length 1
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#> width seq names
#> [1] 85634 GCGGAGCGTGTGACGCTGCGGCCGCCGCGGACCTGGGGATTAA...ACTTTAAATAAATGGGAATTAAATATTTAAGAGCTGACTGGAA 5467

The Biostrings package contains most of the code for dealing with these *StringSet objects - please see the
Biostrings vignettes and help pages for more information.

3.4.40 BSgenome exercises

• Get the sequences for all transcripts of the TP53 gene

3.4.41 AnnotationHub

AnnotationHub is a package that allows us to query and download many different annotation objects, without
having to explicitly install them.

library(AnnotationHub)
hub <- AnnotationHub()
#> snapshotDate(): 2018-06-27
hub
#> AnnotationHub with 44925 records
#> # snapshotDate(): 2018-06-27
#> # $dataprovider: BroadInstitute, Ensembl, UCSC, ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/, Haemcode, Inparanoid8, Pazar,...
#> # $species: Homo sapiens, Mus musculus, Drosophila melanogaster, Bos taurus, Pan troglodytes, Rattus norvegicus, Dan...
#> # $rdataclass: GRanges, BigWigFile, FaFile, TwoBitFile, Rle, OrgDb, ChainFile, EnsDb, Inparanoid8Db, TxDb
#> # additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer, rdatadateadded,
#> # preparerclass, tags, rdatapath, sourceurl, sourcetype
#> # retrieve records with, e.g., 'object[["AH2"]]'
#>
#> title
#> AH2 | Ailuropoda_melanoleuca.ailMel1.69.dna.toplevel.fa
#> AH3 | Ailuropoda_melanoleuca.ailMel1.69.dna_rm.toplevel.fa
#> AH4 | Ailuropoda_melanoleuca.ailMel1.69.dna_sm.toplevel.fa
#> AH5 | Ailuropoda_melanoleuca.ailMel1.69.ncrna.fa
#> AH6 | Ailuropoda_melanoleuca.ailMel1.69.pep.all.fa
#> ... ...
#> AH63655 | phastCons46wayPrimates.UCSC.hg19.chrX.rds
#> AH63656 | phastCons46wayPrimates.UCSC.hg19.chrY.rds
#> AH63657 | Alternative Splicing Annotation for Homo sapiens (Human)
#> AH63658 | Allele data from the IPD IMGT/HLA database
#> AH63659 | Allele data from the IPD KIR database

3.4.42 Querying AnnotationHub

Finding the ‘right’ resource on AnnotationHub is like using Google - a well posed query is necessary to find
what you are after. Useful queries are based on

• Data provider

• Data class

• Species

• Data source
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names(mcols(hub))
#> [1] "title" "dataprovider" "species" "taxonomyid" "genome"
#> [6] "description" "coordinate_1_based" "maintainer" "rdatadateadded" "preparerclass"
#> [11] "tags" "rdataclass" "rdatapath" "sourceurl" "sourcetype"

3.4.43 AnnotationHub Data providers

unique(hub$dataprovider)
#> [1] "Ensembl" "UCSC"
#> [3] "RefNet" "Inparanoid8"
#> [5] "NHLBI" "ChEA"
#> [7] "Pazar" "NIH Pathway Interaction Database"
#> [9] "Haemcode" "BroadInstitute"
#> [11] "PRIDE" "Gencode"
#> [13] "CRIBI" "Genoscope"
#> [15] "MISO, VAST-TOOLS, UCSC" "UWashington"
#> [17] "Stanford" "dbSNP"
#> [19] "BioMart" "GeneOntology"
#> [21] "KEGG" "URGI"
#> [23] "ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/" "EMBL-EBI"

3.4.44 AnnotationHub Data classes

unique(hub$rdataclass)
#> [1] "FaFile" "GRanges" "data.frame"
#> [4] "Inparanoid8Db" "TwoBitFile" "ChainFile"
#> [7] "SQLiteConnection" "biopax" "BigWigFile"
#> [10] "AAStringSet" "MSnSet" "mzRpwiz"
#> [13] "mzRident" "list" "TxDb"
#> [16] "Rle" "EnsDb" "VcfFile"
#> [19] "igraph" "OrgDb" "data.frame, DNAStringSet, GRanges"

3.4.45 AnnotationHub Species

head(unique(hub$species))
#> [1] "Ailuropoda melanoleuca" "Anolis carolinensis" "Bos taurus" "Caenorhabditis elegans"
#> [5] "Callithrix jacchus" "Canis familiaris"
length(unique(hub$species))
#> [1] 1971

3.4.46 AnnotationHub Data sources

unique(hub$sourcetype)
#> [1] "FASTA" "UCSC track" "GTF" "TSV" "Inparanoid" "TwoBit" "Chain"
#> [8] "GRASP" "Zip" "CSV" "BioPax" "BioPaxLevel2" "RData" "BED"
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#> [15] "BigWig" "tab" "mzTab" "mzML" "mzid" "GFF" "ensembl"
#> [22] "VCF" "NCBI/ensembl" "NCBI/UniProt"

3.4.47 AnnotationHub query

qry <- query(hub, c("granges","homo sapiens","ensembl"))
qry
#> AnnotationHub with 56 records
#> # snapshotDate(): 2018-06-27
#> # $dataprovider: Ensembl, UCSC
#> # $species: Homo sapiens
#> # $rdataclass: GRanges
#> # additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer, rdatadateadded,
#> # preparerclass, tags, rdatapath, sourceurl, sourcetype
#> # retrieve records with, e.g., 'object[["AH5046"]]'
#>
#> title
#> AH5046 | Ensembl Genes
#> AH5160 | Ensembl Genes
#> AH5311 | Ensembl Genes
#> AH5434 | Ensembl Genes
#> AH5435 | Ensembl EST Genes
#> ... ...
#> AH60085 | Homo_sapiens.GRCh38.91.gtf
#> AH61125 | Homo_sapiens.GRCh38.92.abinitio.gtf
#> AH61126 | Homo_sapiens.GRCh38.92.chr.gtf
#> AH61127 | Homo_sapiens.GRCh38.92.chr_patch_hapl_scaff.gtf
#> AH61128 | Homo_sapiens.GRCh38.92.gtf

3.4.48 AnnotationHub query

qry$sourceurl
#> [1] "rtracklayer://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/ensGene"
#> [2] "rtracklayer://hgdownload.cse.ucsc.edu/goldenpath/hg18/database/ensGene"
#> [3] "rtracklayer://hgdownload.cse.ucsc.edu/goldenpath/hg17/database/ensGene"
#> [4] "rtracklayer://hgdownload.cse.ucsc.edu/goldenpath/hg16/database/ensGene"
#> [5] "rtracklayer://hgdownload.cse.ucsc.edu/goldenpath/hg16/database/ensEstGene"
#> [6] "ftp://ftp.ensembl.org/pub/release-70/gtf/homo_sapiens/Homo_sapiens.GRCh37.70.gtf.gz"
#> [7] "ftp://ftp.ensembl.org/pub/release-69/gtf/homo_sapiens/Homo_sapiens.GRCh37.69.gtf.gz"
#> [8] "ftp://ftp.ensembl.org/pub/release-71/gtf/homo_sapiens/Homo_sapiens.GRCh37.71.gtf.gz"
#> [9] "ftp://ftp.ensembl.org/pub/release-72/gtf/homo_sapiens/Homo_sapiens.GRCh37.72.gtf.gz"
#> [10] "ftp://ftp.ensembl.org/pub/release-73/gtf/homo_sapiens/Homo_sapiens.GRCh37.73.gtf.gz"
#> [11] "ftp://ftp.ensembl.org/pub/release-74/gtf/homo_sapiens/Homo_sapiens.GRCh37.74.gtf.gz"
#> [12] "ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz"
#> [13] "ftp://ftp.ensembl.org/pub/release-78/gtf/homo_sapiens/Homo_sapiens.GRCh38.78.gtf.gz"
#> [14] "ftp://ftp.ensembl.org/pub/release-76/gtf/homo_sapiens/Homo_sapiens.GRCh38.76.gtf.gz"
#> [15] "ftp://ftp.ensembl.org/pub/release-79/gtf/homo_sapiens/Homo_sapiens.GRCh38.79.gtf.gz"
#> [16] "ftp://ftp.ensembl.org/pub/release-77/gtf/homo_sapiens/Homo_sapiens.GRCh38.77.gtf.gz"
#> [17] "ftp://ftp.ensembl.org/pub/release-80/gtf/homo_sapiens/Homo_sapiens.GRCh38.80.gtf.gz"
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#> [18] "ftp://ftp.ensembl.org/pub/release-81/gtf/homo_sapiens/Homo_sapiens.GRCh38.81.gtf.gz"
#> [19] "ftp://ftp.ensembl.org/pub/release-82/gtf/homo_sapiens/Homo_sapiens.GRCh38.82.gtf.gz"
#> [20] "ftp://ftp.ensembl.org/pub/release-83/gtf/homo_sapiens/Homo_sapiens.GRCh38.83.gtf.gz"
#> [21] "ftp://ftp.ensembl.org/pub/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh38.84.abinitio.gtf.gz"
#> [22] "ftp://ftp.ensembl.org/pub/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh38.84.chr.gtf.gz"
#> [23] "ftp://ftp.ensembl.org/pub/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh38.84.chr_patch_hapl_scaff.gtf.gz"
#> [24] "ftp://ftp.ensembl.org/pub/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh38.84.gtf.gz"
#> [25] "ftp://ftp.ensembl.org/pub/release-85/gtf/homo_sapiens/Homo_sapiens.GRCh38.85.abinitio.gtf.gz"
#> [26] "ftp://ftp.ensembl.org/pub/release-85/gtf/homo_sapiens/Homo_sapiens.GRCh38.85.chr.gtf.gz"
#> [27] "ftp://ftp.ensembl.org/pub/release-85/gtf/homo_sapiens/Homo_sapiens.GRCh38.85.chr_patch_hapl_scaff.gtf.gz"
#> [28] "ftp://ftp.ensembl.org/pub/release-85/gtf/homo_sapiens/Homo_sapiens.GRCh38.85.gtf.gz"
#> [29] "ftp://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/Homo_sapiens.GRCh38.86.abinitio.gtf.gz"
#> [30] "ftp://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/Homo_sapiens.GRCh38.86.chr.gtf.gz"
#> [31] "ftp://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/Homo_sapiens.GRCh38.86.chr_patch_hapl_scaff.gtf.gz"
#> [32] "ftp://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/Homo_sapiens.GRCh38.86.gtf.gz"
#> [33] "ftp://ftp.ensembl.org/pub/release-87/gtf/homo_sapiens/Homo_sapiens.GRCh38.87.abinitio.gtf.gz"
#> [34] "ftp://ftp.ensembl.org/pub/release-87/gtf/homo_sapiens/Homo_sapiens.GRCh38.87.chr.gtf.gz"
#> [35] "ftp://ftp.ensembl.org/pub/release-87/gtf/homo_sapiens/Homo_sapiens.GRCh38.87.chr_patch_hapl_scaff.gtf.gz"
#> [36] "ftp://ftp.ensembl.org/pub/release-87/gtf/homo_sapiens/Homo_sapiens.GRCh38.87.gtf.gz"
#> [37] "ftp://ftp.ensembl.org/pub/release-88/gtf/homo_sapiens/Homo_sapiens.GRCh38.88.abinitio.gtf.gz"
#> [38] "ftp://ftp.ensembl.org/pub/release-88/gtf/homo_sapiens/Homo_sapiens.GRCh38.88.chr.gtf.gz"
#> [39] "ftp://ftp.ensembl.org/pub/release-88/gtf/homo_sapiens/Homo_sapiens.GRCh38.88.chr_patch_hapl_scaff.gtf.gz"
#> [40] "ftp://ftp.ensembl.org/pub/release-88/gtf/homo_sapiens/Homo_sapiens.GRCh38.88.gtf.gz"
#> [41] "ftp://ftp.ensembl.org/pub/release-89/gtf/homo_sapiens/Homo_sapiens.GRCh38.89.abinitio.gtf.gz"
#> [42] "ftp://ftp.ensembl.org/pub/release-89/gtf/homo_sapiens/Homo_sapiens.GRCh38.89.chr.gtf.gz"
#> [43] "ftp://ftp.ensembl.org/pub/release-89/gtf/homo_sapiens/Homo_sapiens.GRCh38.89.chr_patch_hapl_scaff.gtf.gz"
#> [44] "ftp://ftp.ensembl.org/pub/release-89/gtf/homo_sapiens/Homo_sapiens.GRCh38.89.gtf.gz"
#> [45] "ftp://ftp.ensembl.org/pub/release-90/gtf/homo_sapiens/Homo_sapiens.GRCh38.90.abinitio.gtf.gz"
#> [46] "ftp://ftp.ensembl.org/pub/release-90/gtf/homo_sapiens/Homo_sapiens.GRCh38.90.chr.gtf.gz"
#> [47] "ftp://ftp.ensembl.org/pub/release-90/gtf/homo_sapiens/Homo_sapiens.GRCh38.90.chr_patch_hapl_scaff.gtf.gz"
#> [48] "ftp://ftp.ensembl.org/pub/release-90/gtf/homo_sapiens/Homo_sapiens.GRCh38.90.gtf.gz"
#> [49] "ftp://ftp.ensembl.org/pub/release-91/gtf/homo_sapiens/Homo_sapiens.GRCh38.91.abinitio.gtf.gz"
#> [50] "ftp://ftp.ensembl.org/pub/release-91/gtf/homo_sapiens/Homo_sapiens.GRCh38.91.chr.gtf.gz"
#> [51] "ftp://ftp.ensembl.org/pub/release-91/gtf/homo_sapiens/Homo_sapiens.GRCh38.91.chr_patch_hapl_scaff.gtf.gz"
#> [52] "ftp://ftp.ensembl.org/pub/release-91/gtf/homo_sapiens/Homo_sapiens.GRCh38.91.gtf.gz"
#> [53] "ftp://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.abinitio.gtf.gz"
#> [54] "ftp://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.chr.gtf.gz"
#> [55] "ftp://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.chr_patch_hapl_scaff.gtf.gz"
#> [56] "ftp://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens/Homo_sapiens.GRCh38.92.gtf.gz"

3.4.49 Selecting AnnotationHub resource

whatIwant <- qry[["AH50377"]]

We can use these data as they are, or convert to a TxDb format:

GRCh38TxDb <- makeTxDbFromGRanges(whatIwant)
GRCh38TxDb
#> TxDb object:
#> # Db type: TxDb
#> # Supporting package: GenomicFeatures
#> # Genome: GRCh38
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#> # transcript_nrow: 199184
#> # exon_nrow: 675836
#> # cds_nrow: 270225
#> # Db created by: GenomicFeatures package from Bioconductor
#> # Creation time: 2018-07-30 05:22:56 +0000 (Mon, 30 Jul 2018)
#> # GenomicFeatures version at creation time: 1.33.0
#> # RSQLite version at creation time: 2.1.1
#> # DBSCHEMAVERSION: 1.2

3.4.50 AnnotationHub exercises

• How many resources are on AnnotationHub for Atlantic salmon (Salmo salar)?

• Get the most recent Ensembl build for domesticated dog (Canis familiaris) and make a TxDb

3.4.51 biomaRt

The biomaRt package allows queries to an Ensembl Biomart server. We can see the choices of servers that we
can use:

library(biomaRt)
listMarts()
#> biomart version
#> 1 ENSEMBL_MART_ENSEMBL Ensembl Genes 93
#> 2 ENSEMBL_MART_MOUSE Mouse strains 93
#> 3 ENSEMBL_MART_SNP Ensembl Variation 93
#> 4 ENSEMBL_MART_FUNCGEN Ensembl Regulation 93

3.4.52 biomaRt data sets

And we can then check for the available data sets on a particular server.

mart <- useMart("ENSEMBL_MART_ENSEMBL")
head(listDatasets(mart))
#> dataset description version
#> 1 acarolinensis_gene_ensembl Anole lizard genes (AnoCar2.0) AnoCar2.0
#> 2 amelanoleuca_gene_ensembl Panda genes (ailMel1) ailMel1
#> 3 amexicanus_gene_ensembl Cave fish genes (AstMex102) AstMex102
#> 4 anancymaae_gene_ensembl Ma's night monkey genes (Anan_2.0) Anan_2.0
#> 5 aplatyrhynchos_gene_ensembl Duck genes (BGI_duck_1.0) BGI_duck_1.0
#> 6 btaurus_gene_ensembl Cow genes (UMD3.1) UMD3.1

3.4.53 biomaRt queries

After setting up a mart object pointing to the server and data set that we care about, we can make queries.
We first set up the mart object.

mart <- useMart("ENSEMBL_MART_ENSEMBL","hsapiens_gene_ensembl")

Queries are of the form
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getBM(attributes, filters, values, mart)

where

• attributes are the things we want

• filters are the types of IDs we have

• values are the IDs we have

• mart is the mart object we set up

3.4.54 biomaRt attributes and filters

Both attributes and filters have rather inscrutable names, but a listing can be accessed using

atrib <- listAttributes(mart)
filts <- listFilters(mart)
head(atrib)
#> name description page
#> 1 ensembl_gene_id Gene stable ID feature_page
#> 2 ensembl_gene_id_version Gene stable ID version feature_page
#> 3 ensembl_transcript_id Transcript stable ID feature_page
#> 4 ensembl_transcript_id_version Transcript stable ID version feature_page
#> 5 ensembl_peptide_id Protein stable ID feature_page
#> 6 ensembl_peptide_id_version Protein stable ID version feature_page
head(filts)
#> name description
#> 1 chromosome_name Chromosome/scaffold name
#> 2 start Start
#> 3 end End
#> 4 band_start Band Start
#> 5 band_end Band End
#> 6 marker_start Marker Start

3.4.55 biomaRt query

A simple example query

afyids <- c("1000_at","1001_at","1002_f_at","1007_s_at")
getBM(c("affy_hg_u95av2", "hgnc_symbol"), c("affy_hg_u95av2"), afyids, mart)
#> affy_hg_u95av2 hgnc_symbol
#> 1 1000_at MAPK3
#> 2 1007_s_at DDR1
#> 3 1002_f_at
#> 4 1002_f_at CYP2C19
#> 5 1001_at TIE1

3.4.56 biomaRt exercises

• Get the Ensembl gene IDs and HUGO symbol for Entrez Gene IDs 672, 5468 and 7157

• What do you get if you query for the ‘gene_exon’ for GAPDH?
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102: Solving common bioinformatic
challenges using GenomicRanges

4.1 Instructor name and contact information

• Michael Lawrence (michafla@gene.com)

4.2 Workshop Description

We will introduce the fundamental concepts underlying the GenomicRanges package and related infrastructure.
After a structured introduction, we will follow a realistic workflow, along the way exploring the central data
structures, including GRanges and SummarizedExperiment, and useful operations in the ranges algebra.
Topics will include data import/export, computing and summarizing data on genomic features, overlap
detection, integration with reference annotations, scaling strategies, and visualization. Students can follow
along, and there will be plenty of time for students to ask questions about how to apply the infrastructure to
their particular use case. Michael Lawrence (Genentech).

4.2.1 Pre-requisites

• Solid understanding of R
• Basic familiarity with GRanges objects
• Basic familiarity with packages like S4Vectors, IRanges, GenomicRanges, rtracklayer, etc.

4.2.2 Workshop Participation

Describe how students will be expected to participate in the workshop.

4.2.3 R / Bioconductor packages used

• S4Vectors
• IRanges
• GenomicRanges
• rtracklayer
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• GenomicFeatures
• SummarizedExperiment
• GenomicAlignments

4.2.4 Time outline

Activity Time
Intro slides 30m
Workflow(s) 1hr
Remaining questions 30m

4.3 Workshop goals and objectives

4.3.1 Learning goals

• Understand how to apply the *Ranges infrastructure to real-world problems
• Gain insight into the design principles of the infrastructure and how it was meant to be used

4.3.2 Learning objectives

• Manipulate GRanges and related objects
• Use the ranges algebra to analyze genomic ranges
• Implement efficient workflows based on the *Ranges infrastructure

4.4 Introduction

4.4.1 What is the Ranges infrastructure?

The Ranges framework of packages provide data structures and algorithms for analyzing genomic data.
This includes standard genomic data containers like GRanges and SummarizedExperiment, optimized data
representations like Rle, and fast algorithms for computing overlaps, finding nearest neighbors, summarizing
ranges and metadata, etc.

4.4.2 Why use the Ranges infrastructure?

Hundreds of Bioconductor packages operate on Ranges data structures, enabling the construction of complex
workflows integrating multiple packages and data types. The API directly supports data analysis as well
the construction of new genomic software. Code evolves easily from analysis script to generalized package
extending the Bioconductor ecosystem.

4.4.3 Who is this workshop for?

If you still think of R as a programming language and want to write new bioinformatics algorithms and/or
build interoperable software on top of formal genomic data structures, this workshop is for you. For the
tidyverse analog of this workshop, see the plyranges tutorial by Stuart Lee.
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Figure 4.1: An illustration of genomic ranges. GRanges represents a set genomic ranges in terms of the
sequence name (typically the chromosome), start and end coordinates (as an IRanges object), and strand
(either positive, negative, or unstranded). GRanges holds information about its universe of sequences (typically
a genome) and an arbitrary set of metadata columns with information particular to the dataset.

4.5 Setup

To participate in this workshop you’ll need to have R >= 3.5 and install the GenomicRanges, AnnotationHub,
and airway Bioconductor 3.7 packages (Morgan (2018); Love (2018)). You can achieve this by installing the
BiocManager package from CRAN, loading it then running the install command:
install.packages("BiocManager")
library(BiocManager)
install(c("GenomicRanges", "AnnotationHub", "airway"))

4.6 GRanges: Genomic Ranges

The central genomic data structure is the GRanges class, which represents a collection of genomic ranges
that each have a single start and end location on the genome. It can be used to store the location of genomic
features such as binding sites, read alignments and transcripts.

4.7 Constructing a GRanges object from data.frame

If we have a data.frame containing scores on a set of genomic ranges, we can call makeGRangesFromDataFrame()
to promote the data.frame to a GRanges, thus adding semantics, formal constraints, and range-specific
functionality. For example,
suppressPackageStartupMessages({
library(BiocStyle)
library(GenomicRanges)

})

df <- data.frame(
seqnames = rep(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
start = c(101, 105, 125, 132, 134, 152, 153, 160, 166, 170),
end = c(104, 120, 133, 132, 155, 154, 159, 166, 171, 190),
strand = rep(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)),
score = 1:10,
GC = seq(1, 0, length=10),
row.names = head(letters, 10))

gr <- makeGRangesFromDataFrame(df, keep.extra.columns=TRUE)

creates a GRanges object with 10 genomic ranges. The output of the GRanges show() method separates
the information into a left and right hand region that are separated by | symbols. The genomic coordinates
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(seqnames, ranges, and strand) are located on the left-hand side and the metadata columns (annotation) are
located on the right. For this example, the metadata is comprised of "score" and "GC" information, but
almost anything can be stored in the metadata portion of a GRanges object.

4.8 Loading a GRanges object from a standard file format

We often obtain data on genomic ranges from standard track formats, like BED, GFF and BigWig. The
rtracklayer package parses those files directly into GRanges objects. The GenomicAlignments package
parses BAM files into GAlignments objects, which behave much like GRanges, and it is easy to convert a
GAlignments to a GRanges. We will see some examples of loading data from files later in the tutorial.

The seqnames(), ranges(), and strand() accessor functions extract the components of the genomic
coordinates,

4.9 Basic manipulation of GRanges objects

seqnames(gr)
#> factor-Rle of length 10 with 4 runs
#> Lengths: 1 3 2 4
#> Values : chr1 chr2 chr1 chr3
#> Levels(3): chr1 chr2 chr3
ranges(gr)
#> IRanges object with 10 ranges and 0 metadata columns:
#> start end width
#> <integer> <integer> <integer>
#> a 101 104 4
#> b 105 120 16
#> c 125 133 9
#> d 132 132 1
#> e 134 155 22
#> f 152 154 3
#> g 153 159 7
#> h 160 166 7
#> i 166 171 6
#> j 170 190 21
strand(gr)
#> factor-Rle of length 10 with 5 runs
#> Lengths: 1 2 2 3 2
#> Values : - + * + -
#> Levels(3): + - *

The granges() function extracts genomic ranges without corresponding metadata,
granges(gr)
#> GRanges object with 10 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> a chr1 101-104 -
#> b chr2 105-120 +
#> c chr2 125-133 +
#> d chr2 132 *
#> e chr1 134-155 *



4.9. BASIC MANIPULATION OF GRANGES OBJECTS 59

#> f chr1 152-154 +
#> g chr3 153-159 +
#> h chr3 160-166 +
#> i chr3 166-171 -
#> j chr3 170-190 -
#> -------
#> seqinfo: 3 sequences from an unspecified genome; no seqlengths

The start(), end(), width(), and range functions extract basic interval characteristics,
start(gr)
#> [1] 101 105 125 132 134 152 153 160 166 170
end(gr)
#> [1] 104 120 133 132 155 154 159 166 171 190
width(gr)
#> [1] 4 16 9 1 22 3 7 7 6 21

The mcols() accessor extracts the metadata as a DataFrame,
mcols(gr)
#> DataFrame with 10 rows and 2 columns
#> score GC
#> <integer> <numeric>
#> a 1 1
#> b 2 0.888888888888889
#> c 3 0.777777777777778
#> d 4 0.666666666666667
#> e 5 0.555555555555556
#> f 6 0.444444444444444
#> g 7 0.333333333333333
#> h 8 0.222222222222222
#> i 9 0.111111111111111
#> j 10 0
mcols(gr)$score
#> [1] 1 2 3 4 5 6 7 8 9 10
score(gr)
#> [1] 1 2 3 4 5 6 7 8 9 10

The lengths and other properties of the sequences containing the ranges can (and should) be stored in the
GRanges object. Formal tracking of the sequence universe, typically the genome build, ensures data integrity
and prevents accidental mixing of ranges from incompatible contexts. Assuming these data are of Homo
sapiens, we could add the sequence information like this:
seqinfo(gr) <- Seqinfo(genome="hg38")

The Seqinfo() function automatically loads the sequence information for the specified genome= by querying
the UCSC database.

And then retrieves as:
seqinfo(gr)
#> Seqinfo object with 455 sequences (1 circular) from hg38 genome:
#> seqnames seqlengths isCircular genome
#> chr1 248956422 FALSE hg38
#> chr2 242193529 FALSE hg38
#> chr3 198295559 FALSE hg38
#> chr4 190214555 FALSE hg38
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#> chr5 181538259 FALSE hg38
#> ... ... ... ...
#> chrUn_KI270753v1 62944 FALSE hg38
#> chrUn_KI270754v1 40191 FALSE hg38
#> chrUn_KI270755v1 36723 FALSE hg38
#> chrUn_KI270756v1 79590 FALSE hg38
#> chrUn_KI270757v1 71251 FALSE hg38

Methods for accessing the length and names have also been defined.
names(gr)
#> [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
length(gr)
#> [1] 10

4.10 Subsetting GRanges objects

GRanges objects act like vectors of ranges, with the expected vector-like subsetting operations available
gr[2:3]
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> b chr2 105-120 + | 2 0.888888888888889
#> c chr2 125-133 + | 3 0.777777777777778
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

A second argument to the [ subset operator specifies which metadata columns to extract from the GRanges
object. For example,
gr[2:3, "GC"]
#> GRanges object with 2 ranges and 1 metadata column:
#> seqnames ranges strand | GC
#> <Rle> <IRanges> <Rle> | <numeric>
#> b chr2 105-120 + | 0.888888888888889
#> c chr2 125-133 + | 0.777777777777778
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

The subset() function provides an easy way to subset based on attributes of the ranges and columns in the
metadata. For example,
subset(gr, strand == "+" & score > 5, select = score)
#> GRanges object with 3 ranges and 1 metadata column:
#> seqnames ranges strand | score
#> <Rle> <IRanges> <Rle> | <integer>
#> f chr1 152-154 + | 6
#> g chr3 153-159 + | 7
#> h chr3 160-166 + | 8
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

Elements can also be assigned to the GRanges object. This example replaces the the second row of a GRanges
object with the first row of gr.
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grMod <- gr
grMod[2] <- gr[1]
head(grMod, n=3)
#> GRanges object with 3 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 101-104 - | 1 1
#> b chr1 101-104 - | 1 1
#> c chr2 125-133 + | 3 0.777777777777778
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

There are methods to repeat, reverse, or select specific portions of GRanges objects.
rep(gr[2], times = 3)
#> GRanges object with 3 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> b chr2 105-120 + | 2 0.888888888888889
#> b chr2 105-120 + | 2 0.888888888888889
#> b chr2 105-120 + | 2 0.888888888888889
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
rev(gr)
#> GRanges object with 10 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> j chr3 170-190 - | 10 0
#> i chr3 166-171 - | 9 0.111111111111111
#> h chr3 160-166 + | 8 0.222222222222222
#> g chr3 153-159 + | 7 0.333333333333333
#> f chr1 152-154 + | 6 0.444444444444444
#> e chr1 134-155 * | 5 0.555555555555556
#> d chr2 132 * | 4 0.666666666666667
#> c chr2 125-133 + | 3 0.777777777777778
#> b chr2 105-120 + | 2 0.888888888888889
#> a chr1 101-104 - | 1 1
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
head(gr,n=2)
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 101-104 - | 1 1
#> b chr2 105-120 + | 2 0.888888888888889
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
tail(gr,n=2)
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> i chr3 166-171 - | 9 0.111111111111111
#> j chr3 170-190 - | 10 0
#> -------
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#> seqinfo: 455 sequences (1 circular) from hg38 genome
window(gr, start=2,end=4)
#> GRanges object with 3 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> b chr2 105-120 + | 2 0.888888888888889
#> c chr2 125-133 + | 3 0.777777777777778
#> d chr2 132 * | 4 0.666666666666667
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
gr[IRanges(start=c(2,7), end=c(3,9))]
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> b chr2 105-120 + | 2 0.888888888888889
#> c chr2 125-133 + | 3 0.777777777777778
#> g chr3 153-159 + | 7 0.333333333333333
#> h chr3 160-166 + | 8 0.222222222222222
#> i chr3 166-171 - | 9 0.111111111111111
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

4.11 Splitting and combining GRanges objects

THe split() function divides a GRanges into groups, returning a GRangesList, a class that we will describe
and demonstrate later.
sp <- split(gr, rep(1:2, each=5))
sp
#> GRangesList object of length 2:
#> $1
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 101-104 - | 1 1
#> b chr2 105-120 + | 2 0.888888888888889
#> c chr2 125-133 + | 3 0.777777777777778
#> d chr2 132 * | 4 0.666666666666667
#> e chr1 134-155 * | 5 0.555555555555556
#>
#> $2
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> f chr1 152-154 + | 6 0.444444444444444
#> g chr3 153-159 + | 7 0.333333333333333
#> h chr3 160-166 + | 8 0.222222222222222
#> i chr3 166-171 - | 9 0.111111111111111
#> j chr3 170-190 - | 10 0
#>
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
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We can split the ranges by metadata columns, like strand,
split(gr, ~ strand)
#> GRangesList object of length 3:
#> $+
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> b chr2 105-120 + | 2 0.888888888888889
#> c chr2 125-133 + | 3 0.777777777777778
#> f chr1 152-154 + | 6 0.444444444444444
#> g chr3 153-159 + | 7 0.333333333333333
#> h chr3 160-166 + | 8 0.222222222222222
#>
#> $-
#> GRanges object with 3 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> a chr1 101-104 - | 1 1
#> i chr3 166-171 - | 9 0.111111111111111
#> j chr3 170-190 - | 10 0
#>
#> $*
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> d chr2 132 * | 4 0.666666666666667
#> e chr1 134-155 * | 5 0.555555555555556
#>
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

The c() and append() functions combine two (or more in the case of c()) GRanges objects.
c(sp[[1]], sp[[2]])
#> GRanges object with 10 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 101-104 - | 1 1
#> b chr2 105-120 + | 2 0.888888888888889
#> c chr2 125-133 + | 3 0.777777777777778
#> d chr2 132 * | 4 0.666666666666667
#> e chr1 134-155 * | 5 0.555555555555556
#> f chr1 152-154 + | 6 0.444444444444444
#> g chr3 153-159 + | 7 0.333333333333333
#> h chr3 160-166 + | 8 0.222222222222222
#> i chr3 166-171 - | 9 0.111111111111111
#> j chr3 170-190 - | 10 0
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

The stack() function stacks the elements of a GRangesList into a single GRanges and adds a column
indicating the origin of each element,
stack(sp, index.var="group")
#> GRanges object with 10 ranges and 3 metadata columns:
#> seqnames ranges strand | group score GC
#> <Rle> <IRanges> <Rle> | <Rle> <integer> <numeric>
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#> a chr1 101-104 - | 1 1 1
#> b chr2 105-120 + | 1 2 0.888888888888889
#> c chr2 125-133 + | 1 3 0.777777777777778
#> d chr2 132 * | 1 4 0.666666666666667
#> e chr1 134-155 * | 1 5 0.555555555555556
#> f chr1 152-154 + | 2 6 0.444444444444444
#> g chr3 153-159 + | 2 7 0.333333333333333
#> h chr3 160-166 + | 2 8 0.222222222222222
#> i chr3 166-171 - | 2 9 0.111111111111111
#> j chr3 170-190 - | 2 10 0
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

4.12 Aggregating GRanges objects

Like other tabular data structures, we can aggregate GRanges objects, for example,
aggregate(gr, score ~ strand, mean)
#> DataFrame with 3 rows and 2 columns
#> strand score
#> <factor> <numeric>
#> 1 + 5.2
#> 2 - 6.66666666666667
#> 3 * 4.5

The aggregate() function also supports a syntax similar to summarize() from dplyr,
aggregate(gr, ~ strand, n_score = lengths(score), mean_score = mean(score))
#> DataFrame with 3 rows and 4 columns
#> grouping strand n_score mean_score
#> <ManyToOneGrouping> <factor> <integer> <numeric>
#> 1 2,3,6,... + 5 5.2
#> 2 1,9,10 - 3 6.66666666666667
#> 3 4,5 * 2 4.5

Note that we need to call lengths(score) instead of length(score) because score is actually a list-like
object in the aggregation expression.

4.13 Basic interval operations for GRanges objects

There are many functions for manipulating GRanges objects. The functions can be classified as intra-range
functions, inter-range functions, and between-range functions.

Intra-range functions operate on each element of a GRanges object independent of the other ranges in the
object. For example, the flank function can be used to recover regions flanking the set of ranges represented
by the GRanges object. So to get a GRanges object containing the ranges that include the 10 bases upstream
according to the direction of “transcription” (indicated by the strand):

r g <- gr[1:3] g <- append(g, gr[10]) flank(g, 10) #> GRanges object with 4 ranges
and 2 metadata columns: #> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric> #> a chr1 105-114
- | 1 1 #> b chr2 95-104 + | 2 0.888888888888889
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#> c chr2 115-124 + | 3 0.777777777777778 #> j chr3 191-200
- | 10 0 #> ------- #> seqinfo: 455 sequences (1 circular)
from hg38 genome

And to include the downstream bases:
flank(g, 10, start=FALSE)
#> GRanges object with 4 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 91-100 - | 1 1
#> b chr2 121-130 + | 2 0.888888888888889
#> c chr2 134-143 + | 3 0.777777777777778
#> j chr3 160-169 - | 10 0
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

A common use case for flank() is generating promoter regions based on the transcript ranges. There is a
convenience function that by default generates a region starting 2000bp upstream and 200bp downstream of
the TSS,
promoters(g)
#> Warning in valid.GenomicRanges.seqinfo(x, suggest.trim = TRUE): GRanges object contains 4 out-of-bound ranges located on sequences
#> chr1, chr2, and chr3. Note that ranges located on a sequence whose
#> length is unknown (NA) or on a circular sequence are not
#> considered out-of-bound (use seqlengths() and isCircular() to get
#> the lengths and circularity flags of the underlying sequences).
#> You can use trim() to trim these ranges. See
#> ?`trim,GenomicRanges-method` for more information.
#> GRanges object with 4 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 -95-2104 - | 1 1
#> b chr2 -1895-304 + | 2 0.888888888888889
#> c chr2 -1875-324 + | 3 0.777777777777778
#> j chr3 -9-2190 - | 10 0
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

To ignore strand/transcription and assume the orientation of left to right use unstrand(),
flank(unstrand(g), 10)
#> GRanges object with 4 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 91-100 * | 1 1
#> b chr2 95-104 * | 2 0.888888888888889
#> c chr2 115-124 * | 3 0.777777777777778
#> j chr3 160-169 * | 10 0
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

Other examples of intra-range functions include resize() and shift(). The shift() function will move
the ranges by a specific number of base pairs, and the resize() function will set a specific width, by default
fixing the “transcription” start (or just the start when strand is “*“). The fix= argument controls whether
the”start“,”end" or “center” is held constant.
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shift(g, 5)
#> GRanges object with 4 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 106-109 - | 1 1
#> b chr2 110-125 + | 2 0.888888888888889
#> c chr2 130-138 + | 3 0.777777777777778
#> j chr3 175-195 - | 10 0
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
resize(g, 30)
#> GRanges object with 4 ranges and 2 metadata columns:
#> seqnames ranges strand | score GC
#> <Rle> <IRanges> <Rle> | <integer> <numeric>
#> a chr1 75-104 - | 1 1
#> b chr2 105-134 + | 2 0.888888888888889
#> c chr2 125-154 + | 3 0.777777777777778
#> j chr3 161-190 - | 10 0
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

The GenomicRanges help page ?"intra-range-methods" summarizes these methods.

Inter-range functions involve comparisons between ranges in a single GRanges object and typically aggregate
ranges. For instance, the reduce() function will merge overlapping and adjacent ranges to produce a minimal
set of ranges representing the regions covered by the original set.
reduce(gr)
#> GRanges object with 8 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 152-154 +
#> [2] chr1 101-104 -
#> [3] chr1 134-155 *
#> [4] chr2 105-120 +
#> [5] chr2 125-133 +
#> [6] chr2 132 *
#> [7] chr3 153-166 +
#> [8] chr3 166-190 -
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
reduce(gr, ignore.strand=TRUE)
#> GRanges object with 5 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 101-104 *
#> [2] chr1 134-155 *
#> [3] chr2 105-120 *
#> [4] chr2 125-133 *
#> [5] chr3 153-190 *
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

Rarely, it useful to complement the (reduced) ranges. Note that the universe is taken as the entire sequence
span in all three strands (+, -, *), which is often surprising when working with unstranded ranges.

http://bioconductor.org/packages/GenomicRanges
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gaps(g)
#> GRanges object with 1369 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 1-248956422 +
#> [2] chr1 1-100 -
#> [3] chr1 105-248956422 -
#> [4] chr1 1-248956422 *
#> [5] chr2 1-104 +
#> ... ... ... ...
#> [1365] chrUn_KI270756v1 1-79590 -
#> [1366] chrUn_KI270756v1 1-79590 *
#> [1367] chrUn_KI270757v1 1-71251 +
#> [1368] chrUn_KI270757v1 1-71251 -
#> [1369] chrUn_KI270757v1 1-71251 *
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

The disjoin function breaks up the ranges so that they do not overlap but still cover the same regions:
disjoin(g)
#> GRanges object with 4 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 101-104 -
#> [2] chr2 105-120 +
#> [3] chr2 125-133 +
#> [4] chr3 170-190 -
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

The coverage function counts how many ranges overlap each position in the sequence universe of a GRanges
object.
cov <- coverage(g)
cov[1:3]
#> RleList of length 3
#> $chr1
#> integer-Rle of length 248956422 with 3 runs
#> Lengths: 100 4 248956318
#> Values : 0 1 0
#>
#> $chr2
#> integer-Rle of length 242193529 with 5 runs
#> Lengths: 104 16 4 9 242193396
#> Values : 0 1 0 1 0
#>
#> $chr3
#> integer-Rle of length 198295559 with 3 runs
#> Lengths: 169 21 198295369
#> Values : 0 1 0

The coverage is stored compactly as an RleList, with one Rle vector per sequence. We can convert it to a
GRanges,
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cov_gr <- GRanges(cov)
cov_gr
#> GRanges object with 463 ranges and 1 metadata column:
#> seqnames ranges strand | score
#> <Rle> <IRanges> <Rle> | <integer>
#> [1] chr1 1-100 * | 0
#> [2] chr1 101-104 * | 1
#> [3] chr1 105-248956422 * | 0
#> [4] chr2 1-104 * | 0
#> [5] chr2 105-120 * | 1
#> ... ... ... ... . ...
#> [459] chrUn_KI270753v1 1-62944 * | 0
#> [460] chrUn_KI270754v1 1-40191 * | 0
#> [461] chrUn_KI270755v1 1-36723 * | 0
#> [462] chrUn_KI270756v1 1-79590 * | 0
#> [463] chrUn_KI270757v1 1-71251 * | 0
#> -------
#> seqinfo: 455 sequences from an unspecified genome

and even convert the GRanges form back to an RleList by computing a weighted coverage,
cov <- coverage(cov_gr, weight="score")

The GRanges derivative GPos, a compact representation of width 1 ranges, is useful for representing coverage,
although it cannot yet represent the coverage for the entire human genome (or any genome with over ~ 2
billion bp).
GPos(cov[1:3])
#> GPos object with 689445510 positions and 0 metadata columns:
#> seqnames pos strand
#> <Rle> <integer> <Rle>
#> [1] chr1 1 *
#> [2] chr1 2 *
#> [3] chr1 3 *
#> [4] chr1 4 *
#> [5] chr1 5 *
#> ... ... ... ...
#> [689445506] chr3 198295555 *
#> [689445507] chr3 198295556 *
#> [689445508] chr3 198295557 *
#> [689445509] chr3 198295558 *
#> [689445510] chr3 198295559 *
#> -------
#> seqinfo: 3 sequences from an unspecified genome

These inter-range functions all generate entirely new sets of ranges. The return value is left unannotated, since
there is no obvious way to carry the metadata across the operation. The user is left to map the metadata
to the new ranges. Functions like reduce() and disjoin() facilitate this by optionally including in the
returned metadata a one-to-many reverse mapping from the aggregate ranges to input ranges. For example,
to average the score over a reduction,
rg <- reduce(gr, with.revmap=TRUE)
rg$score <- mean(extractList(gr$score, rg$revmap))

See the GenomicRanges help page ?"inter-range-methods" for additional help.

http://bioconductor.org/packages/GenomicRanges
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4.14 Interval set operations for GRanges objects

Between-range functions calculate relationships between different GRanges objects. Of central importance
are findOverlaps and related operations; these are discussed below. Additional operations treat GRanges
as mathematical sets of coordinates; union(g, g2) is the union of the coordinates in g and g2. Here are
examples for calculating the union, the intersect and the asymmetric difference (using setdiff).
g2 <- head(gr, n=2)
union(g, g2)
#> GRanges object with 4 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 101-104 -
#> [2] chr2 105-120 +
#> [3] chr2 125-133 +
#> [4] chr3 170-190 -
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
intersect(g, g2)
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 101-104 -
#> [2] chr2 105-120 +
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
setdiff(g, g2)
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr2 125-133 +
#> [2] chr3 170-190 -
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

Related functions are available when the structure of the GRanges objects are ‘parallel’ to one another, i.e.,
element 1 of object 1 is related to element 1 of object 2, and so on. These operations all begin with a p, which
is short for parallel. The functions then perform element-wise, e.g., the union of element 1 of object 1 with
element 1 of object 2, etc. A requirement for these operations is that the number of elements in each GRanges
object is the same, and that both of the objects have the same seqnames and strand assignments throughout.
g3 <- g[1:2]
ranges(g3[1]) <- IRanges(start=105, end=112)
punion(g2, g3)
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> a chr1 101-112 -
#> b chr2 105-120 +
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
pintersect(g2, g3)
#> GRanges object with 2 ranges and 3 metadata columns:
#> seqnames ranges strand | score GC hit
#> <Rle> <IRanges> <Rle> | <integer> <numeric> <logical>
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#> a chr1 105-104 - | 1 1 TRUE
#> b chr2 105-120 + | 2 0.888888888888889 TRUE
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome
psetdiff(g2, g3)
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> a chr1 101-104 -
#> b chr2 105-104 +
#> -------
#> seqinfo: 455 sequences (1 circular) from hg38 genome

For more information on the GRanges classes be sure to consult the manual page.
?GRanges

A relatively comprehensive list of available functions is discovered with
methods(class="GRanges")

4.15 Finding overlaps between GRanges objects

Interval overlapping is the process of comparing the ranges in two objects to determine if and when they
overlap. As such, it is perhaps the most common operation performed on GRanges objects. To this end, the
GenomicRanges package provides a family of interval overlap functions. The most general of these functions
is findOverlaps(), which takes a query and a subject as inputs and returns a Hits object containing the
index pairings for the overlapping elements.

Let us assume that we have three random data.frame objects, each with annoyingly differing ways of naming
the columns defining the ranges,
set.seed(66+105+111+99+49+56)

pos <- sample(1:200, size = 30L)
size <- 10L
end <- size + pos - 1L
chrom <- sample(paste0("chr", 1:3), size = 30L, replace = TRUE)
query_df <- data.frame(chrom = chrom,

start = pos,
end = end)

query_dfs <- split(query_df, 1:3)
q1 <- rename(query_dfs[[1L]], start = "pos")
q2 <- rename(query_dfs[[2L]], chrom = "ch", start = "st")
q3 <- rename(query_dfs[[3L]], end = "last")

The makeGRangesFromDataFrame() function can guess some of these, but not all of them, so we help it out,
q1 <- makeGRangesFromDataFrame(q1, start.field = "pos")
q2 <- makeGRangesFromDataFrame(q2, seqnames.field = "ch",

start.field = "st")
q3 <- makeGRangesFromDataFrame(q3, end.field = "last")
query <- mstack(q1, q2, q3, .index.var="replicate")
sort(query, by = ~ start)
#> GRanges object with 30 ranges and 1 metadata column:

http://bioconductor.org/packages/GenomicRanges
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#> seqnames ranges strand | replicate
#> <Rle> <IRanges> <Rle> | <Rle>
#> 25 chr1 11-20 * | 1
#> 22 chr1 16-25 * | 1
#> 2 chr2 21-30 * | 2
#> 30 chr3 50-59 * | 3
#> 6 chr2 51-60 * | 3
#> .. ... ... ... . ...
#> 26 chr3 160-169 * | 2
#> 13 chr1 169-178 * | 1
#> 29 chr2 183-192 * | 2
#> 27 chr3 190-199 * | 3
#> 24 chr3 197-206 * | 3
#> -------
#> seqinfo: 3 sequences from an unspecified genome; no seqlengths

Above, we use the convenient mstack() function, which stacks its arguments, populating the .index.var=
column with the origin of each range (using the argument names or positions).

Perhaps the simplest overlap-based operation is subsetByOverlaps(), which extracts the elements in the
query (the first argument) that overlap at least one element in the subject (the second).
subject <- gr
subsetByOverlaps(query, subject, ignore.strand=TRUE)
#> GRanges object with 9 ranges and 1 metadata column:
#> seqnames ranges strand | replicate
#> <Rle> <IRanges> <Rle> | <Rle>
#> 10 chr2 120-129 * | 1
#> 28 chr1 151-160 * | 1
#> 5 chr2 128-137 * | 2
#> 14 chr1 149-158 * | 2
#> 23 chr3 153-162 * | 2
#> 26 chr3 160-169 * | 2
#> 9 chr1 92-101 * | 3
#> 21 chr1 148-157 * | 3
#> 27 chr3 190-199 * | 3
#> -------
#> seqinfo: 3 sequences from an unspecified genome; no seqlengths

In every call to an overlap operation, it is necessary to specify ignore.strand=TRUE, except in rare cases
when we do not want ranges on opposite strands to be considered overlapping.

To generally compute on the overlaps, we call findOverlaps() to return a Hits object, which is essentially
a bipartite graph matching query ranges to overlapping subject ranges.
hits <- findOverlaps(query, subject, ignore.strand=TRUE)

We typically use the hits to perform one of two operations: join and aggregate. For example, we could inner
join the scores from the subject using the query and subject indexes,
joined <- query[queryHits(hits)]
joined$score <- subject$score[subjectHits(hits)]

The above carries over a single metadata column from the subject. Similar code would carry over other
columns and even the ranges themselves.

Sometimes, we want to merge the matched query and subject ranges, typically by finding their intersection,
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ranges(joined) <- ranges(pintersect(joined, subject[subjectHits(hits)]))

The typical aggregation is counting the number of hits overlapping a query. In general, aggregation starts by
grouping the subject hits by query hits, which we express as a coercion to a List,
hitsByQuery <- as(hits, "List")

The result is an IntegerList, a type of AtomicList. AtomicList objects have many methods for efficient
aggregation. In this case, we just call lengths() to get the count:
counts <- lengths(hitsByQuery)

Since this a common operation, there are shortcuts,
counts <- countQueryHits(hits)

or even shorter and more efficient,
counts <- countOverlaps(query, subject, ignore.strand=TRUE)
unname(counts)
#> [1] 0 0 0 2 0 0 0 0 0 2 0 2 0 0 2 0 0 2 2 0 0 0 1 0 0 0 2 0 1 0

Often, we want to combine joins and aggregations. For example, we may want to annotate each query with
the maximum score among the subject hits,
query$maxScore <- max(extractList(subject$score, hitsByQuery))
subset(query, maxScore > 0)
#> GRanges object with 9 ranges and 2 metadata columns:
#> seqnames ranges strand | replicate maxScore
#> <Rle> <IRanges> <Rle> | <Rle> <integer>
#> 10 chr2 120-129 * | 1 3
#> 28 chr1 151-160 * | 1 6
#> 5 chr2 128-137 * | 2 4
#> 14 chr1 149-158 * | 2 6
#> 23 chr3 153-162 * | 2 8
#> 26 chr3 160-169 * | 2 9
#> 9 chr1 92-101 * | 3 1
#> 21 chr1 148-157 * | 3 6
#> 27 chr3 190-199 * | 3 10
#> -------
#> seqinfo: 3 sequences from an unspecified genome; no seqlengths

In rare cases, we can more or less arbitrarily select one of the subject hits. The select= argument to
findOverlaps() automatically selects an “arbitrary”, “first” (in subject order) or “last” subject range,
hits <- findOverlaps(query, subject, select="first", ignore.strand=TRUE)
hits <- findOverlaps(query, subject, select="arbitrary", ignore.strand=TRUE)
hits
#> [1] NA NA NA 2 NA NA NA NA NA 5 NA 3 NA NA 5 NA NA 7 8 NA NA NA 1
#> [24] NA NA NA 5 NA 10 NA

4.16 Exercises

1. Find the average intensity of the X and Y measurements for each each replicate over all positions in the
query object
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2. Add a new column to the intensities object that is the distance from each position to its closest gene
(hint IRanges::distance())

3. Find flanking regions downstream of the genes in gr that have width of 8bp
4. Are any of the intensities positions within the flanking region?

4.17 Example: exploring BigWig files from AnnotationHub

In the workflow of ChIP-seq data analysis, we are often interested in finding peaks from islands of coverage
over a chromosome. Here we will use plyranges to explore ChiP-seq data from the Human Epigenome
Roadmap project Roadmap Epigenomics Consortium et al. (2015).

4.17.1 Extracting data from AnnotationHub

This data is available on Bioconductor’s AnnotationHub. First we construct an AnnotationHub, and then
query() for all bigWigFiles related to the project that correspond to the following conditions:

1. are from methylation marks (H3K4ME in the title)
2. correspond to primary T CD8+ memory cells from peripheral blood
3. correspond to unimputed log10 P-values

First we construct a hub that contains all references to the EpigenomeRoadMap data and extract the metadata
as a data.frame:
library(AnnotationHub)
ah <- AnnotationHub()
#> snapshotDate(): 2018-06-27
roadmap_hub <- query(ah, "EpigenomeRoadMap")
metadata <- query(ah, "Metadata")[[1L]]
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.AnnotationHub/47270'
head(metadata)
#> EID GROUP COLOR MNEMONIC
#> 1 E001 ESC #924965 ESC.I3
#> 2 E002 ESC #924965 ESC.WA7
#> 3 E003 ESC #924965 ESC.H1
#> 4 E004 ES-deriv #4178AE ESDR.H1.BMP4.MESO
#> 5 E005 ES-deriv #4178AE ESDR.H1.BMP4.TROP
#> 6 E006 ES-deriv #4178AE ESDR.H1.MSC
#> STD_NAME
#> 1 ES-I3 Cells
#> 2 ES-WA7 Cells
#> 3 H1 Cells
#> 4 H1 BMP4 Derived Mesendoderm Cultured Cells
#> 5 H1 BMP4 Derived Trophoblast Cultured Cells
#> 6 H1 Derived Mesenchymal Stem Cells
#> EDACC_NAME ANATOMY TYPE
#> 1 ES-I3_Cell_Line ESC PrimaryCulture
#> 2 ES-WA7_Cell_Line ESC PrimaryCulture
#> 3 H1_Cell_Line ESC PrimaryCulture
#> 4 H1_BMP4_Derived_Mesendoderm_Cultured_Cells ESC_DERIVED ESCDerived
#> 5 H1_BMP4_Derived_Trophoblast_Cultured_Cells ESC_DERIVED ESCDerived
#> 6 H1_Derived_Mesenchymal_Stem_Cells ESC_DERIVED ESCDerived
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#> AGE SEX SOLID_LIQUID ETHNICITY SINGLEDONOR_COMPOSITE
#> 1 CL Female <NA> <NA> SD
#> 2 CL Female <NA> <NA> SD
#> 3 CL Male <NA> <NA> SD
#> 4 CL Male <NA> <NA> SD
#> 5 CL Male <NA> <NA> SD
#> 6 CL Male <NA> <NA> SD

To find out the name of the sample corresponding to primary memory T-cells we can filter the data.frame.
We extract the sample ID corresponding to our filter.
primary_tcells <- subset(metadata,

ANATOMY == "BLOOD" & TYPE == "PrimaryCell" &
EDACC_NAME == "CD8_Memory_Primary_Cells")$EID

primary_tcells <- as.character(primary_tcells)

Now we can take our roadmap hub and query it based on our other conditions:
methylation_files <- query(roadmap_hub,

c("BigWig", primary_tcells, "H3K4ME[1-3]",
"pval.signal"))

methylation_files
#> AnnotationHub with 5 records
#> # snapshotDate(): 2018-06-27
#> # $dataprovider: BroadInstitute
#> # $species: Homo sapiens
#> # $rdataclass: BigWigFile
#> # additional mcols(): taxonomyid, genome, description,
#> # coordinate_1_based, maintainer, rdatadateadded, preparerclass,
#> # tags, rdatapath, sourceurl, sourcetype
#> # retrieve records with, e.g., 'object[["AH33454"]]'
#>
#> title
#> AH33454 | E048-H3K4me1.pval.signal.bigwig
#> AH33455 | E048-H3K4me3.pval.signal.bigwig
#> AH39974 | E048-H3K4me1.imputed.pval.signal.bigwig
#> AH40101 | E048-H3K4me2.imputed.pval.signal.bigwig
#> AH40228 | E048-H3K4me3.imputed.pval.signal.bigwig

So we’ll take the first two entries and download them as BigWigFiles:
bw_files <- lapply(methylation_files[1:2], `[[`, 1L)
#> require("rtracklayer")
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.AnnotationHub/38894'
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.AnnotationHub/38895'

We have our desired BigWig files so now we can we can start analyzing them.

4.17.2 Reading BigWig files

For this analysis, we will call peaks from a score vector over chromosome 10.
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First, we extract the genome information from the first BigWig file and filter to get the range for chromosome
10. This range will be used as a filter when reading the file.
chr10_ranges <- Seqinfo(genome="hg19")["chr10"]

Then we read the BigWig file only extracting scores if they overlap chromosome 10.
library(rtracklayer)
chr10_scores <- lapply(bw_files, import, which = chr10_ranges,

as = "RleList")
chr10_scores[[1]]$chr10
#> numeric-Rle of length 135534747 with 5641879 runs
#> Lengths: 60612 172 ... 9907
#> Values : 0.0394200012087822 0.154219999909401 ... 0

Each of element of the list is a run-length encoded vector of the scores for a particular signal type.

We find the islands by slicing the vectors,
islands <- lapply(chr10_scores, slice, lower=1L)

where the islands are represented as Views objects, i.e., ranges of interest over a genomic vector. Then we
find the summit within each island,
summits <- lapply(islands, viewRangeMaxs)

using the optimized viewRangeMaxs() function. Each element of the summits list is a RangesList object,
holding the ranges for each summit. The structure of the RangesList keeps track of the chromosome (10) of
the summits (there could be multiple chromosomes in general). We broaden the summits and reduce them in
order to smooth the peak calls and provide some context,
summits <- lapply(lapply(summits, `+`, 50L), reduce)

After this preprocessing, we want to convert the result to a more familiar and convenient GRanges object
containing an RleList “score” column containing the score vector for each summit,
summits_grs <- lapply(summits, GRanges)
score_grs <- mapply(function(scores, summits) {

summits$score <- scores[summits]
seqlengths(summits) <- lengths(scores)
summits

}, chr10_scores, summits_grs)
score_gr <- stack(GenomicRangesList(score_grs), index.var="signal_type")

One problem with RangesList is that it does not keep track of the sequence lengths, so we need to add those
after forming the GRanges.

We could then find summits with the maximum summit height within each signal type:
score_gr$score_max <- max(score_gr$score)
chr10_max_score_region <- aggregate(score_gr, score_max ~ signal_type, max)

4.17.3 Exercises

1. Use the reduce_ranges() function to find all peaks for each signal type.
2. How could you annotate the scores to find out which genes overlap each peak found in 1.?
3. Plot a 1000nt window centred around the maximum scores for each signal type using the ggbio or Gviz

package.
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4.18 Worked example: coverage analysis of BAM files

A common quality control check in a genomics workflow is to perform coverage analysis over features of
interest or over the entire genome. Here we use the data from the airway package to operate on read alignment
data and compute coverage histograms.

First let’s gather all the BAM files available to use in airway (see browseVignettes("airway") for more
information about the data and how it was prepared):
library(tools)
bams <- list_files_with_exts(system.file("extdata", package = "airway"), "bam")
names(bams) <- sub("_[^_]+$", "", basename(bams))
library(Rsamtools)
#> Loading required package: Biostrings
#> Loading required package: XVector
#>
#> Attaching package: 'Biostrings'
#> The following object is masked from 'package:base':
#>
#> strsplit
bams <- BamFileList(bams)

Casting the vector of filenames to a formal BamFileList is critical for informing the following code about the
nature of the files.

To start let’s look at a single BAM file (containing only reads from chr1). We can compute the coverage of
the alignments over all contigs in the BAM as follows:
first_bam <- bams[[1L]]
first_bam_cvg <- coverage(first_bam)

The result is a list of Rle objects, one per chromosome. Like other AtomicList objects, we call pass our
RleList to table() to compute the coverage histogram by chromosome,
head(table(first_bam_cvg)[1L,])
#> 0 1 2 3 4 5
#> 249202844 15607 5247 3055 2030 1280

For RNA-seq experiments we are often interested in splitting up alignments based on whether the alignment
has skipped a region from the reference (that is, there is an “N” in the cigar string, indicating an intron). We
can represent the nested structure using a GRangesList object.

To begin we read the BAM file into a GAlignments object using readGAlignments() and extract the ranges,
chopping by introns, using grglist(),
library(GenomicAlignments)
#> Loading required package: SummarizedExperiment
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:AnnotationHub':
#>
#> cache
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#> Loading required package: DelayedArray
#> Loading required package: matrixStats
#>
#> Attaching package: 'matrixStats'
#> The following objects are masked from 'package:Biobase':
#>
#> anyMissing, rowMedians
#> Loading required package: BiocParallel
#>
#> Attaching package: 'DelayedArray'
#> The following objects are masked from 'package:matrixStats':
#>
#> colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
#> The following object is masked from 'package:Biostrings':
#>
#> type
#> The following objects are masked from 'package:base':
#>
#> aperm, apply
reads <- grglist(readGAlignments(first_bam))

Finally, we can find the junction reads:
reads[lengths(reads) >= 2L]
#> GRangesList object of length 3833:
#> [[1]]
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] 1 11072744-11072800 +
#> [2] 1 11073773-11073778 +
#>
#> [[2]]
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> [1] 1 11072745-11072800 -
#> [2] 1 11073773-11073779 -
#>
#> [[3]]
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> [1] 1 11072746-11072800 +
#> [2] 1 11073773-11073780 +
#>
#> ...
#> <3830 more elements>
#> -------
#> seqinfo: 84 sequences from an unspecified genome

We typically want to count how many reads overlap each gene. First, we get the transcript structures as a
GRangesList from Ensembl,
library(GenomicFeatures)
#> Loading required package: AnnotationDbi
library(EnsDb.Hsapiens.v75)
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#> Loading required package: ensembldb
#> Loading required package: AnnotationFilter
#>
#> Attaching package: 'ensembldb'
#> The following object is masked from 'package:stats':
#>
#> filter
tx <- exonsBy(EnsDb.Hsapiens.v75, "gene")

Finally, we count how many reads overlap each transcript,
reads <- keepStandardChromosomes(reads)
counts <- countOverlaps(tx, reads, ignore.strand=TRUE)
head(counts[counts > 0])
#> ENSG00000009724 ENSG00000116649 ENSG00000120942 ENSG00000120948
#> 89 2006 436 5495
#> ENSG00000171819 ENSG00000171824
#> 8 2368

To do this over every sample, we use the summarizeOverlaps() convenience function,
airway <- summarizeOverlaps(features=tx, reads=bams,

mode="Union", singleEnd=FALSE,
ignore.strand=TRUE, fragments=TRUE)

airway
#> class: RangedSummarizedExperiment
#> dim: 64102 8
#> metadata(0):
#> assays(1): counts
#> rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
#> rowData names(0):
#> colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
#> colData names(0):

The airway object is a SummarizedExperiment object, the central Bioconductor data structure for storing
results summarized per feature and sample, along with sample and feature metadata. It is at the point of
summarization that workflows switch focus from the ranges infrastructure to Bioconductor modeling packages,
most of which consume the SummarizedExperiment data structure, so this is an appropriate point to end this
tutorial.

4.18.1 Exercises

1. Compute the total depth of coverage across all features.
2. How could you compute the proportion of bases covered over an entire genome? (hint: seqinfo and

S4Vectors::merge)
3. How could you compute the strand specific genome wide coverage?
4. Create a workflow for computing the strand specific coverage for all BAM files.
5. For each sample plot total breadth of coverage against the number of bases covered faceted by each

sample name.
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4.19 Conclusions

The Bioconductor ranges infrastructure is rich and complex, and it can be intimidating to new users. However,
the effort invested will pay dividends, especially when generalizing a series of bespoke analyses into a reusable
contribution to Bioconductor.
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Chapter 5

103: Public data resources and
Bioconductor

5.1 Instructor names and contact information

• Levi Waldron <levi.waldron at sph.cuny.edu> (City University of New York, New York, NY, USA)
• Benjamin Haibe-Kains <benjamin.haibe.kains at utoronto.ca> (Princess Margaret Cancer Center,

Toronto, Canada)
• Sean Davis (Center for Cancer Research, National Cancer Institute, National Institutes of Health,

Bethesda, MD, USA)

5.2 Syllabus

5.2.1 Workshop Description

The goal of this workshop is to introduce Bioconductor packages for finding, accessing, and using large-
scale public data resources including the Gene Expression Omnibus GEO, Sequence Read Archive SRA,
the Genomic Data Commons GDC, and Bioconductor-hosted curated data resources for metagenomics,
pharmacogenomics PharmacoDB, and The Cancer Genome Atlas.

5.2.2 Pre-requisites

• Basic knowledge of R syntax
• Familiarity with the ExpressionSet and SummarizedExperiment classes
• Basic familiarity with ’omics technologies such as microarray and NGS sequencing

Interested students can prepare by reviewing vignettes of the packages listed in “R/Bioconductor packages
used” to gain background on aspects of interest to them.

Some more general background on these resources is published in Kannan et al. (2016).

5.2.3 Workshop Participation

Each component will include runnable examples of typical usage that students are encouraged to run during
demonstration of that component.
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https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/sra
https://portal.gdc.cancer.gov/
http://pharmacodb.ca/
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5.2.4 R/Bioconductor packages used

• GEOquery: Access to the NCBI Gene Expression Omnibus (GEO), a public repository of gene expression
(primarily microarray) data.

• GenomicDataCommons: Access to the NIH / NCI Genomic Data Commons RESTful service.
• SRAdbV2: A compilation of metadata from the NCBI Sequence Read Archive, the largest public

repository of sequencing data from the next generation of sequencing platforms, and tools
• curatedTCGAData: Curated data from The Cancer Genome Atlas (TCGA) as MultiAssayExperiment

Objects
• curatedMetagenomicData: Curated metagenomic data of the human microbiome
• HMP16SData: Curated metagenomic data of the human microbiome
• PharmacoGx: Curated large-scale preclinical pharmacogenomic data and basic analysis tools

5.2.5 Time outline

This is a 1h45m workshop.

Activity Time
Overview 10m
GEOquery 15m
GenomicDataCommons 20m
Sequence Read Archive 20m
curatedTCGAData 10m
curatedMetagenomicData and HMP16SData 15m
PharmacoGx 20m

5.2.6 Workshop goals and objectives

Bioconductor provides access to significant amounts of publicly available experimental data. This workshop
introduces students to Bioconductor interfaces to the NCBI’s Gene Expression Omnibus, Genomic Data
Commons, Sequence Read Archive and PharmacoDB. It additionally introduces curated resources providing
The Cancer Genome Atlas, the Human Microbiome Project and other microbiome studies, and major
pharmacogenomic studies, as native Bioconductor objects ready for analysis and comparison to in-house
datasets.

5.2.7 Learning goals

• search NCBI resources for publicly available ’omics data
• quickly use data from the TCGA and the Human Microbiome Project

5.2.8 Learning objectives

• find and download processed microarray and RNA-seq datasets from the Gene Expression Omnibus
• find and download ’omics data from the Genomic Data Commons and Sequence Read Archive
• download and manipulate data from The Cancer Genome Atlas and Human Microbiome Project
• download and explore pharmacogenomics data

http://bioconductor.org/packages/GEOquery
http://bioconductor.org/packages/GenomicDataCommons
https://github.com/seandavi/SRAdbV2
http://bioconductor.org/packages/curatedTCGAData
http://bioconductor.org/packages/curatedMetagenomicData
http://bioconductor.org/packages/HMP16SData
http://bioconductor.org/packages/PharmacoGx
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5.3 Overview

Before proceeding, ensure that the following packages are installed.
required_pkgs = c(

"TCGAbiolinks",
"GEOquery",
"GenomicDataCommons",
"limma",
"curatedTCGAData",
"recount",
"curatedMetagenomicData",
"phyloseq",
"HMP16SData",
"caTools",
"piano",
"isa",
"VennDiagram",
"downloader",

"gdata",
"AnnotationDbi",
"hgu133a.db",

"PharmacoGx")
BiocManager::install(required_pkgs)

5.4 GEOquery

(Davis and Meltzer 2007)

The NCBI Gene Expression Omnibus (GEO) serves as a public repository for a wide range of high-throughput
experimental data. These data include single and dual channel microarray-based experiments measuring
mRNA, genomic DNA, and protein abundance, as well as non-array techniques such as serial analysis of
gene expression (SAGE), mass spectrometry proteomic data, and high-throughput sequencing data. The
GEOquery package (Davis and Meltzer 2007) forms a bridge between this public repository and the analysis
capabilities in Bioconductor.

5.4.1 Overview of GEO

At the most basic level of organization of GEO, there are four basic entity types. The first three (Sample,
Platform, and Series) are supplied by users; the fourth, the dataset, is compiled and curated by GEO staff
from the user-submitted data. See the GEO home page for more information.

5.4.1.1 Platforms

A Platform record describes the list of elements on the array (e.g., cDNAs, oligonucleotide probesets, ORFs,
antibodies) or the list of elements that may be detected and quantified in that experiment (e.g., SAGE
tags, peptides). Each Platform record is assigned a unique and stable GEO accession number (GPLxxx). A
Platform may reference many Samples that have been submitted by multiple submitters.

http://bioconductor.org/packages/GEOquery
https://www.ncbi.nlm.nih.gov/geo/
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5.4.1.2 Samples

A Sample record describes the conditions under which an individual Sample was handled, the manipulations it
underwent, and the abundance measurement of each element derived from it. Each Sample record is assigned
a unique and stable GEO accession number (GSMxxx). A Sample entity must reference only one Platform
and may be included in multiple Series.

5.4.1.3 Series

A Series record defines a set of related Samples considered to be part of a group, how the Samples are related,
and if and how they are ordered. A Series provides a focal point and description of the experiment as a whole.
Series records may also contain tables describing extracted data, summary conclusions, or analyses. Each
Series record is assigned a unique and stable GEO accession number (GSExxx). Series records are available
in a couple of formats which are handled by GEOquery independently. The smaller and new GSEMatrix files
are quite fast to parse; a simple flag is used by GEOquery to choose to use GSEMatrix files (see below).

5.4.1.4 Datasets

GEO DataSets (GDSxxx) are curated sets of GEO Sample data. There are hundreds of GEO datasets available,
but GEO discontinued creating GDS records several years ago. We mention them here for completeness only.

5.4.2 Getting Started using GEOquery

Getting data from GEO is really quite easy. There is only one command that is needed, getGEO. This one
function interprets its input to determine how to get the data from GEO and then parse the data into useful
R data structures.
library(GEOquery)

With the library loaded, we are free to access any GEO accession.

5.4.3 Use case: MDS plot of cancer data

The data we are going to access are from this paper.

Background: The tumor microenvironment is an important factor in cancer immunotherapy
response. To further understand how a tumor affects the local immune system, we analyzed
immune gene expression differences between matching normal and tumor tissue.Methods: We
analyzed public and new gene expression data from solid cancers and isolated immune cell
populations. We also determined the correlation between CD8, FoxP3 IHC, and our gene
signatures.Results: We observed that regulatory T cells (Tregs) were one of the main drivers of
immune gene expression differences between normal and tumor tissue. A tumor-specific CD8
signature was slightly lower in tumor tissue compared with normal of most (12 of 16) cancers,
whereas a Treg signature was higher in tumor tissue of all cancers except liver. Clustering by Treg
signature found two groups in colorectal cancer datasets. The high Treg cluster had more samples
that were consensus molecular subtype 1/4, right-sided, and microsatellite-instable, compared
with the low Treg cluster. Finally, we found that the correlation between signature and IHC was
low in our small dataset, but samples in the high Treg cluster had significantly more CD8+ and
FoxP3+ cells compared with the low Treg cluster.Conclusions: Treg gene expression is highly
indicative of the overall tumor immune environment.Impact: In comparison with the consensus
molecular subtype and microsatellite status, the Treg signature identifies more colorectal tumors
with high immune activation that may benefit from cancer immunotherapy.

https://doi.org/10.1158/1055-9965.EPI-17-0461
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In this little exercise, we will:

1. Access public omics data using the GEOquery package
2. Convert the public omics data to a SummarizedExperiment object.
3. Perform a simple unsupervised analysis to visualize these public data.

Use the GEOquery package to fetch data about GSE103512.
gse = getGEO("GSE103512")[[1]]

Note that getGEO, when used to retrieve GSE records, returns a list. The members of the list each represent
one GEO Platform, since each GSE record can contain multiple related datasets (eg., gene expression and
DNA methylation). In this case, the list is of length one, but it is still necessary to grab the first elment.

The first step–a detail–is to convert from the older Bioconductor data structure (GEOquery was written in
2007), the ExpressionSet, to the newer SummarizedExperiment. One line suffices.
library(SummarizedExperiment)
se = as(gse, "SummarizedExperiment")

Examine two variables of interest, cancer type and tumor/normal status.
with(colData(se),table(`cancer.type.ch1`,`normal.ch1`))
#> normal.ch1
#> cancer.type.ch1 no yes
#> BC 65 10
#> CRC 57 12
#> NSCLC 60 9
#> PCA 60 7

Filter gene expression by variance to find most informative genes.
sds = apply(assay(se, 'exprs'),1,sd)
dat = assay(se, 'exprs')[order(sds,decreasing = TRUE)[1:500],]

Perform multidimensional scaling and prepare for plotting. We will be using ggplot2, so we need to make a
data.frame before plotting.
mdsvals = cmdscale(dist(t(dat)))
mdsvals = as.data.frame(mdsvals)
mdsvals$Type=factor(colData(se)[,'cancer.type.ch1'])
mdsvals$Normal = factor(colData(se)[,'normal.ch1'])
head(mdsvals)
#> V1 V2 Type Normal
#> GSM2772660 8.531331 -18.57115 BC no
#> GSM2772661 8.991591 -13.63764 BC no
#> GSM2772662 10.788973 -13.48403 BC no
#> GSM2772663 3.127105 -19.13529 BC no
#> GSM2772664 13.056599 -13.88711 BC no
#> GSM2772665 7.903717 -13.24731 BC no

And do the plot.
library(ggplot2)
ggplot(mdsvals, aes(x=V1,y=V2,shape=Normal,color=Type)) +

geom_point( alpha=0.6) + theme(text=element_text(size = 18))

https://bioconductor.org/packages/GEOquery
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103512
https://en.wikipedia.org/wiki/Multidimensional_scaling
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5.4.4 Accessing Raw Data from GEO

NCBI GEO accepts (but has not always required) raw data such as .CEL files, .CDF files, images, etc.
It is also not uncommon for some RNA-seq or other sequencing datasets to supply only raw data (with
accompanying sample information, of course), necessitating Sometimes, it is useful to get quick access to such
data. A single function, getGEOSuppFiles, can take as an argument a GEO accession and will download all
the raw data associate with that accession. By default, the function will create a directory in the current
working directory to store the raw data for the chosen GEO accession.

5.5 GenomicDataCommons

From the Genomic Data Commons (GDC) website:

The National Cancer Institute’s (NCI’s) Genomic Data Commons (GDC) is a data sharing
platform that promotes precision medicine in oncology. It is not just a database or a tool; it is an
expandable knowledge network supporting the import and standardization of genomic and clinical
data from cancer research programs. The GDC contains NCI-generated data from some of the
largest and most comprehensive cancer genomic datasets, including The Cancer Genome Atlas
(TCGA) and Therapeutically Applicable Research to Generate Effective Therapies (TARGET).
For the first time, these datasets have been harmonized using a common set of bioinformatics
pipelines, so that the data can be directly compared. As a growing knowledge system for cancer,
the GDC also enables researchers to submit data, and harmonizes these data for import into the
GDC. As more researchers add clinical and genomic data to the GDC, it will become an even
more powerful tool for making discoveries about the molecular basis of cancer that may lead to
better care for patients.

https://gdc.nci.nih.gov/about-gdc
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The data model for the GDC is complex, but it worth a quick overview and a graphical representation is
included here.

The GDC API exposes these nodes and edges in a somewhat simplified set of RESTful endpoints.

5.5.1 Quickstart

This quickstart section is just meant to show basic functionality. More details of functionality are included
further on in this vignette and in function-specific help.

To report bugs or problems, either submit a new issue or submit a bug.report(package='GenomicDataCommons')
from within R (which will redirect you to the new issue on GitHub).

5.5.1.1 Installation

Installation of the GenomicDataCommons package is identical to installation of other Bioconductor packages.
install.packages('BiocManager')
BiocManager::install('GenomicDataCommons')

After installation, load the library in order to use it.
library(GenomicDataCommons)

5.5.1.2 Check connectivity and status

The GenomicDataCommons package relies on having network connectivity. In addition, the NCI GDC API
must also be operational and not under maintenance. Checking status can be used to check this connectivity
and functionality.
GenomicDataCommons::status()
#> $commit
#> [1] "e9e20d6f97f2bf6dd3b3261e36ead57c56a4c7cc"
#>
#> $data_release
#> [1] "Data Release 12.0 - June 13, 2018"
#>
#> $status
#> [1] "OK"
#>
#> $tag
#> [1] "1.14.1"
#>
#> $version
#> [1] 1

5.5.1.3 Find data

The following code builds a manifest that can be used to guide the download of raw data. Here, filtering
finds gene expression files quantified as raw counts using HTSeq from ovarian cancer patients.
ge_manifest = files() %>%

filter( ~ cases.project.project_id == 'TCGA-OV' &
type == 'gene_expression' &

https://gdc.cancer.gov/developers/gdc-data-model/gdc-data-model-components
https://en.wikipedia.org/wiki/Representational_state_transfer
https://github.com/Bioconductor/GenomicDataCommons/issues
http://bioconductor.org/packages/GenomicDataCommons
http://bioconductor.org/packages/GenomicDataCommons
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Figure 5.1: The data model is encoded as a so-called property graph. Nodes represent entities such as
Projects, Cases, Diagnoses, Files (various kinds), and Annotations. The relationships between these entities
are maintained as edges. Both nodes and edges may have Properties that supply instance details.
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analysis.workflow_type == 'HTSeq - Counts') %>%
manifest()

5.5.1.4 Download data

After the 379 gene expression files specified in the query above. Using multiple processes to do the download
very significantly speeds up the transfer in many cases. On a standard 1Gb connection, the following completes
in about 30 seconds. The first time the data are downloaded, R will ask to create a cache directory (see
?gdc_cache for details of setting and interacting with the cache). Resulting downloaded files will be stored
in the cache directory. Future access to the same files will be directly from the cache, alleviating multiple
downloads.
fnames = lapply(ge_manifest$id[1:20],gdcdata)

If the download had included controlled-access data, the download above would have needed to include a
token. Details are available in the authentication section below.

5.5.1.5 Metadata queries

The GenomicDataCommons can access the significant clinical, demographic, biospecimen, and annotation
information contained in the NCI GDC.
expands = c("diagnoses","annotations",

"demographic","exposures")
projResults = projects() %>%

results(size=10)
str(projResults,list.len=5)
#> List of 8
#> $ dbgap_accession_number: chr [1:10] "phs001179" "phs000470" NA NA ...
#> $ disease_type :List of 10
#> ..$ FM-AD : chr [1:23] "Germ Cell Neoplasms" "Acinar Cell Neoplasms" "Miscellaneous Tumors" "Thymic Epithelial Neoplasms" ...
#> ..$ TARGET-RT: chr "Rhabdoid Tumor"
#> ..$ TCGA-UCS : chr "Uterine Carcinosarcoma"
#> ..$ TCGA-LUSC: chr "Lung Squamous Cell Carcinoma"
#> ..$ TCGA-BRCA: chr "Breast Invasive Carcinoma"
#> .. [list output truncated]
#> $ released : logi [1:10] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> $ state : chr [1:10] "open" "open" "open" "open" ...
#> $ primary_site :List of 10
#> ..$ FM-AD : chr [1:42] "Kidney" "Testis" "Unknown" "Other and unspecified parts of biliary tract" ...
#> ..$ TARGET-RT: chr "Kidney"
#> ..$ TCGA-UCS : chr "Uterus"
#> ..$ TCGA-LUSC: chr "Lung"
#> ..$ TCGA-BRCA: chr "Breast"
#> .. [list output truncated]
#> [list output truncated]
#> - attr(*, "row.names")= int [1:10] 1 2 3 4 5 6 7 8 9 10
#> - attr(*, "class")= chr [1:3] "GDCprojectsResults" "GDCResults" "list"
names(projResults)
#> [1] "dbgap_accession_number" "disease_type"
#> [3] "released" "state"
#> [5] "primary_site" "project_id"

http://bioconductor.org/packages/GenomicDataCommons
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#> [7] "id" "name"
# or listviewer::jsonedit(clinResults)

5.5.2 Basic design

This package design is meant to have some similarities to the “hadleyverse” approach of dplyr. Roughly, the
functionality for finding and accessing files and metadata can be divided into:

1. Simple query constructors based on GDC API endpoints.
2. A set of verbs that when applied, adjust filtering, field selection, and faceting (fields for aggregation)

and result in a new query object (an endomorphism)
3. A set of verbs that take a query and return results from the GDC

In addition, there are exhiliary functions for asking the GDC API for information about available and default
fields, slicing BAM files, and downloading actual data files. Here is an overview of functionality1.

• Creating a query
– projects()
– cases()
– files()
– annotations()

• Manipulating a query
– filter()
– facet()
– select()

• Introspection on the GDC API fields
– mapping()
– available_fields()
– default_fields()
– grep_fields()
– field_picker()
– available_values()
– available_expand()

• Executing an API call to retrieve query results
– results()
– count()
– response()

• Raw data file downloads
– gdcdata()
– transfer()
– gdc_client()

• Summarizing and aggregating field values (faceting)
– aggregations()

• Authentication
– gdc_token()

• BAM file slicing
– slicing()

5.5.3 Usage

There are two main classes of operations when working with the NCI GDC.
1See individual function and methods documentation for specific details.
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Figure 5.2: A screenshot of an example query of the GDC repository portal.

1. Querying metadata and finding data files (e.g., finding all gene expression quantifications data files for
all colon cancer patients).

2. Transferring raw or processed data from the GDC to another computer (e.g., downloading raw or
processed data)

Both classes of operation are reviewed in detail in the following sections.

5.6 Querying metadata

Vast amounts of metadata about cases (patients, basically), files, projects, and so-called annotations are
available via the NCI GDC API. Typically, one will want to query metadata to either focus in on a set of files
for download or transfer or to perform so-called aggregations (pivot-tables, facets, similar to the R table()
functionality).

Querying metadata starts with creating a “blank” query. One will often then want to filter the query to
limit results prior to retrieving results. The GenomicDataCommons package has helper functions for listing
fields that are available for filtering.

In addition to fetching results, the GDC API allows faceting, or aggregating,, useful for compiling reports,
generating dashboards, or building user interfaces to GDC data (see GDC web query interface for a non-R-
based example).

5.6.0.1 Creating a query

The GenomicDataCommons package accesses the same API as the GDC website. Therefore, a useful
approach, particularly for beginning users is to examine the filters available on the GDC repository pages
to find appropriate filtering criteria. From there, converting those checkboxes to a GenomicDataCommons
query() is relatively straightforward. Note that only a small subset of the available_fields() are available
by default on the website.

http://bioconductor.org/packages/GenomicDataCommons
https://portal.gdc.cancer.gov/repository
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A query of the GDC starts its life in R. Queries follow the four metadata endpoints available at the GDC.
In particular, there are four convenience functions that each create GDCQuery objects (actually, specific
subclasses of GDCQuery):

• projects()
• cases()
• files()
• annotations()

pquery = projects()

The pquery object is now an object of (S3) class, GDCQuery (and gdc_projects and list). The object
contains the following elements:

• fields: This is a character vector of the fields that will be returned when we retrieve data. If no fields
are specified to, for example, the projects() function, the default fields from the GDC are used (see
default_fields())

• filters: This will contain results after calling the filter() method and will be used to filter results on
retrieval.

• facets: A character vector of field names that will be used for aggregating data in a call to
aggregations().

• archive: One of either “default” or “legacy”.
• token: A character(1) token from the GDC. See the authentication section for details, but note that, in

general, the token is not necessary for metadata query and retrieval, only for actual data download.

Looking at the actual object (get used to using str()!), note that the query contains no results.
str(pquery)
#> List of 5
#> $ fields : chr [1:16] "awg_review" "dbgap_accession_number" "disease_type" "in_review" ...
#> $ filters: NULL
#> $ facets : NULL
#> $ legacy : logi FALSE
#> $ expand : NULL
#> - attr(*, "class")= chr [1:3] "gdc_projects" "GDCQuery" "list"

5.6.0.2 Retrieving results

[ GDC pagination documentation ]

[ GDC sorting documentation ]

With a query object available, the next step is to retrieve results from the GDC. The GenomicDataCommons
package. The most basic type of results we can get is a simple count() of records available that satisfy the
filter criteria. Note that we have not set any filters, so a count() here will represent all the project records
publicly available at the GDC in the “default” archive"
pcount = count(pquery)
# or
pcount = pquery %>% count()
pcount
#> [1] 40

The results() method will fetch actual results.
presults = pquery %>% results()

https://gdc-portal.nci.nih.gov/legacy-archive/
https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#size-and-from
https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#sort
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These results are returned from the GDC in JSON format and converted into a (potentially nested) list in R.
The str() method is useful for taking a quick glimpse of the data.
str(presults)
#> List of 8
#> $ dbgap_accession_number: chr [1:10] "phs001179" "phs000470" NA NA ...
#> $ disease_type :List of 10
#> ..$ FM-AD : chr [1:23] "Germ Cell Neoplasms" "Acinar Cell Neoplasms" "Miscellaneous Tumors" "Thymic Epithelial Neoplasms" ...
#> ..$ TARGET-RT: chr "Rhabdoid Tumor"
#> ..$ TCGA-UCS : chr "Uterine Carcinosarcoma"
#> ..$ TCGA-LUSC: chr "Lung Squamous Cell Carcinoma"
#> ..$ TCGA-BRCA: chr "Breast Invasive Carcinoma"
#> ..$ TCGA-SKCM: chr "Skin Cutaneous Melanoma"
#> ..$ TARGET-OS: chr "Osteosarcoma"
#> ..$ TCGA-THYM: chr "Thymoma"
#> ..$ TARGET-WT: chr "High-Risk Wilms Tumor"
#> ..$ TCGA-ESCA: chr "Esophageal Carcinoma"
#> $ released : logi [1:10] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> $ state : chr [1:10] "open" "open" "open" "open" ...
#> $ primary_site :List of 10
#> ..$ FM-AD : chr [1:42] "Kidney" "Testis" "Unknown" "Other and unspecified parts of biliary tract" ...
#> ..$ TARGET-RT: chr "Kidney"
#> ..$ TCGA-UCS : chr "Uterus"
#> ..$ TCGA-LUSC: chr "Lung"
#> ..$ TCGA-BRCA: chr "Breast"
#> ..$ TCGA-SKCM: chr "Skin"
#> ..$ TARGET-OS: chr "Bone"
#> ..$ TCGA-THYM: chr "Thymus"
#> ..$ TARGET-WT: chr "Kidney"
#> ..$ TCGA-ESCA: chr "Esophagus"
#> $ project_id : chr [1:10] "FM-AD" "TARGET-RT" "TCGA-UCS" "TCGA-LUSC" ...
#> $ id : chr [1:10] "FM-AD" "TARGET-RT" "TCGA-UCS" "TCGA-LUSC" ...
#> $ name : chr [1:10] "Foundation Medicine Adult Cancer Clinical Dataset (FM-AD)" "Rhabdoid Tumor" "Uterine Carcinosarcoma" "Lung Squamous Cell Carcinoma" ...
#> - attr(*, "row.names")= int [1:10] 1 2 3 4 5 6 7 8 9 10
#> - attr(*, "class")= chr [1:3] "GDCprojectsResults" "GDCResults" "list"

A default of only 10 records are returned. We can use the size and from arguments to results() to
either page through results or to change the number of results. Finally, there is a convenience method,
results_all() that will simply fetch all the available results given a query. Note that results_all() may
take a long time and return HUGE result sets if not used carefully. Use of a combination of count() and
results() to get a sense of the expected data size is probably warranted before calling results_all()
length(ids(presults))
#> [1] 10
presults = pquery %>% results_all()
length(ids(presults))
#> [1] 40
# includes all records
length(ids(presults)) == count(pquery)
#> [1] TRUE

Extracting subsets of results or manipulating the results into a more conventional R data structure is not
easily generalizable. However, the purrr, rlist, and data.tree packages are all potentially of interest for
manipulating complex, nested list structures. For viewing the results in an interactive viewer, consider the
listviewer package.

http://www.json.org/
https://github.com/hadley/purrr
https://renkun.me/rlist/
https://cran.r-project.org/web/packages/data.tree/vignettes/data.tree.html
https://github.com/timelyportfolio/listviewer
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5.6.0.3 Fields and Values

[ GDC fields documentation ]

Central to querying and retrieving data from the GDC is the ability to specify which fields to return, filtering
by fields and values, and faceting or aggregating. The GenomicDataCommons package includes two simple
functions, available_fields() and default_fields(). Each can operate on a character(1) endpoint name
(“cases”, “files”, “annotations”, or “projects”) or a GDCQuery object.
default_fields('files')
#> [1] "access" "acl"
#> [3] "batch_id" "created_datetime"
#> [5] "data_category" "data_format"
#> [7] "data_type" "error_type"
#> [9] "experimental_strategy" "file_autocomplete"
#> [11] "file_id" "file_name"
#> [13] "file_size" "file_state"
#> [15] "imaging_date" "magnification"
#> [17] "md5sum" "origin"
#> [19] "platform" "read_pair_number"
#> [21] "revision" "state"
#> [23] "state_comment" "submitter_id"
#> [25] "tags" "type"
#> [27] "updated_datetime"
# The number of fields available for files endpoint
length(available_fields('files'))
#> [1] 703
# The first few fields available for files endpoint
head(available_fields('files'))
#> [1] "access" "acl"
#> [3] "analysis.analysis_id" "analysis.analysis_type"
#> [5] "analysis.batch_id" "analysis.created_datetime"

The fields to be returned by a query can be specified following a similar paradigm to that of the dplyr package.
The select() function is a verb that resets the fields slot of a GDCQuery; note that this is not quite analogous
to the dplyr select() verb that limits from already-present fields. We completely replace the fields when
using select() on a GDCQuery.
# Default fields here
qcases = cases()
qcases$fields
#> [1] "aliquot_ids" "analyte_ids"
#> [3] "batch_id" "case_autocomplete"
#> [5] "case_id" "created_datetime"
#> [7] "days_to_index" "days_to_lost_to_followup"
#> [9] "disease_type" "index_date"
#> [11] "lost_to_followup" "portion_ids"
#> [13] "primary_site" "sample_ids"
#> [15] "slide_ids" "state"
#> [17] "submitter_aliquot_ids" "submitter_analyte_ids"
#> [19] "submitter_id" "submitter_portion_ids"
#> [21] "submitter_sample_ids" "submitter_slide_ids"
#> [23] "updated_datetime"
# set up query to use ALL available fields
# Note that checking of fields is done by select()
qcases = cases() %>% GenomicDataCommons::select(available_fields('cases'))

https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#fields
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head(qcases$fields)
#> [1] "case_id" "aliquot_ids"
#> [3] "analyte_ids" "annotations.annotation_id"
#> [5] "annotations.batch_id" "annotations.case_id"

Finding fields of interest is such a common operation that the GenomicDataCommons includes the
grep_fields() function and the field_picker() widget. See the appropriate help pages for details.

5.6.0.4 Facets and aggregation

[ GDC facet documentation ]

The GDC API offers a feature known as aggregation or faceting. By specifying one or more fields (of
appropriate type), the GDC can return to us a count of the number of records matching each potential value.
This is similar to the R table method. Multiple fields can be returned at once, but the GDC API does not
have a cross-tabulation feature; all aggregations are only on one field at a time. Results of aggregation()
calls come back as a list of data.frames (actually, tibbles).
# total number of files of a specific type
res = files() %>% facet(c('type','data_type')) %>% aggregations()
res$type
#> key doc_count
#> 1 simple_somatic_mutation 64015
#> 2 annotated_somatic_mutation 63580
#> 3 aligned_reads 45985
#> 4 copy_number_segment 44752
#> 5 gene_expression 34713
#> 6 slide_image 30036
#> 7 biospecimen_supplement 25151
#> 8 mirna_expression 22976
#> 9 clinical_supplement 12496
#> 10 methylation_beta_value 12359
#> 11 aggregated_somatic_mutation 186
#> 12 masked_somatic_mutation 132

Using aggregations() is an also easy way to learn the contents of individual fields and forms the basis for
faceted search pages.

5.6.0.5 Filtering

[ GDC filtering documentation ]

The GenomicDataCommons package uses a form of non-standard evaluation to specify R-like queries that
are then translated into an R list. That R list is, upon calling a method that fetches results from the GDC
API, translated into the appropriate JSON string. The R expression uses the formula interface as suggested
by Hadley Wickham in his vignette on non-standard evaluation

It’s best to use a formula because a formula captures both the expression to evaluate and the
environment where the evaluation occurs. This is important if the expression is a mixture of
variables in a data frame and objects in the local environment [for example].

For the user, these details will not be too important except to note that a filter expression must begin with a
“~”.

https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#facets
https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#filters-specifying-the-query
https://cran.r-project.org/web/packages/dplyr/vignettes/nse.html
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qfiles = files()
qfiles %>% count() # all files
#> [1] 356381

To limit the file type, we can refer back to the section on faceting to see the possible values for the file field
“type”. For example, to filter file results to only “gene_expression” files, we simply specify a filter.
qfiles = files() %>% filter(~ type == 'gene_expression')
# here is what the filter looks like after translation
str(get_filter(qfiles))
#> List of 2
#> $ op : 'scalar' chr "="
#> $ content:List of 2
#> ..$ field: chr "type"
#> ..$ value: chr "gene_expression"

What if we want to create a filter based on the project (‘TCGA-OVCA’, for example)? Well, we have a couple
of possible ways to discover available fields. The first is based on base R functionality and some intuition.
grep('pro',available_fields('files'),value=TRUE)
#> [1] "cases.diagnoses.progression_free_survival"
#> [2] "cases.diagnoses.progression_free_survival_event"
#> [3] "cases.diagnoses.progression_or_recurrence"
#> [4] "cases.project.awg_review"
#> [5] "cases.project.dbgap_accession_number"
#> [6] "cases.project.disease_type"
#> [7] "cases.project.in_review"
#> [8] "cases.project.intended_release_date"
#> [9] "cases.project.is_legacy"
#> [10] "cases.project.name"
#> [11] "cases.project.primary_site"
#> [12] "cases.project.program.dbgap_accession_number"
#> [13] "cases.project.program.name"
#> [14] "cases.project.program.program_id"
#> [15] "cases.project.project_id"
#> [16] "cases.project.releasable"
#> [17] "cases.project.release_requested"
#> [18] "cases.project.released"
#> [19] "cases.project.request_submission"
#> [20] "cases.project.state"
#> [21] "cases.project.submission_enabled"
#> [22] "cases.samples.days_to_sample_procurement"
#> [23] "cases.samples.method_of_sample_procurement"
#> [24] "cases.samples.portions.slides.number_proliferating_cells"
#> [25] "cases.tissue_source_site.project"

Interestingly, the project information is “nested” inside the case. We don’t need to know that detail other
than to know that we now have a few potential guesses for where our information might be in the files records.
We need to know where because we need to construct the appropriate filter.
files() %>% facet('cases.project.project_id') %>% aggregations()
#> $cases.project.project_id
#> key doc_count
#> 1 FM-AD 36134
#> 2 TCGA-BRCA 31511
#> 3 TCGA-LUAD 17051
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#> 4 TCGA-UCEC 16130
#> 5 TCGA-HNSC 15266
#> 6 TCGA-OV 15057
#> 7 TCGA-THCA 14420
#> 8 TCGA-LUSC 15323
#> 9 TCGA-LGG 14723
#> 10 TCGA-KIRC 15082
#> 11 TCGA-PRAD 14287
#> 12 TCGA-COAD 14270
#> 13 TCGA-GBM 11973
#> 14 TCGA-SKCM 12724
#> 15 TCGA-STAD 12845
#> 16 TCGA-BLCA 11710
#> 17 TCGA-LIHC 10814
#> 18 TCGA-CESC 8593
#> 19 TCGA-KIRP 8506
#> 20 TCGA-SARC 7493
#> 21 TCGA-PAAD 5306
#> 22 TCGA-ESCA 5270
#> 23 TCGA-PCPG 5032
#> 24 TCGA-READ 4918
#> 25 TCGA-TGCT 4217
#> 26 TCGA-THYM 3444
#> 27 TCGA-LAML 3960
#> 28 TARGET-NBL 2795
#> 29 TCGA-ACC 2546
#> 30 TCGA-KICH 2324
#> 31 TCGA-MESO 2330
#> 32 TARGET-AML 2170
#> 33 TCGA-UVM 2179
#> 34 TCGA-UCS 1658
#> 35 TARGET-WT 1406
#> 36 TCGA-DLBC 1330
#> 37 TCGA-CHOL 1348
#> 38 TARGET-OS 47
#> 39 TARGET-RT 174
#> 40 TARGET-CCSK 15

We note that cases.project.project_id looks like it is a good fit. We also note that TCGA-OV is the correct
project_id, not TCGA-OVCA. Note that unlike with dplyr and friends, the filter() method here replaces the
filter and does not build on any previous filters.
qfiles = files() %>%

filter( ~ cases.project.project_id == 'TCGA-OV' & type == 'gene_expression')
str(get_filter(qfiles))
#> List of 2
#> $ op : 'scalar' chr "and"
#> $ content:List of 2
#> ..$ :List of 2
#> .. ..$ op : 'scalar' chr "="
#> .. ..$ content:List of 2
#> .. .. ..$ field: chr "cases.project.project_id"
#> .. .. ..$ value: chr "TCGA-OV"
#> ..$ :List of 2
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#> .. ..$ op : 'scalar' chr "="
#> .. ..$ content:List of 2
#> .. .. ..$ field: chr "type"
#> .. .. ..$ value: chr "gene_expression"
qfiles %>% count()
#> [1] 1137

Asking for a count() of results given these new filter criteria gives r qfiles %>% count() results. Generating
a manifest for bulk downloads is as simple as asking for the manifest from the current query.
manifest_df = qfiles %>% manifest()
head(manifest_df)
#> # A tibble: 6 x 5
#> id filename md5 size state
#> <chr> <chr> <chr> <int> <chr>
#> 1 567ced20-00cf-46~ b2552f6f-dd15-410f-a621-~ 9af0d993c40aec~ 258324 live
#> 2 05692746-1770-47~ 701b8c71-6c05-4e5b-ac10-~ 8e9816f4d9b871~ 526537 live
#> 3 e2d47640-8565-43~ b2552f6f-dd15-410f-a621-~ e05190ed65c8a8~ 543367 live
#> 4 bc6dab72-dc5a-4c~ a1c4f19e-079e-47e7-8939-~ 110d8cda0ccdf6~ 253059 live
#> 5 0a176c20-f3f3-4b~ 01eac123-1e21-440d-9495-~ b40921f17128a9~ 540592 live
#> 6 2ae73487-7acf-42~ 12c8b289-b9d0-4697-b3a6-~ 4d3c2b951d94f0~ 549437 live

Note that we might still not be quite there. Looking at filenames, there are suspiciously named files that
might include “FPKM”, “FPKM-UQ”, or “counts”. Another round of grep and available_fields, looking
for “type” turned up that the field “analysis.workflow_type” has the appropriate filter criteria.
qfiles = files() %>% filter( ~ cases.project.project_id == 'TCGA-OV' &

type == 'gene_expression' &
analysis.workflow_type == 'HTSeq - Counts')

manifest_df = qfiles %>% manifest()
nrow(manifest_df)
#> [1] 379

The GDC Data Transfer Tool can be used (from R, transfer() or from the command-line) to orchestrate
high-performance, restartable transfers of all the files in the manifest. See the bulk downloads section for
details.

5.6.1 Authentication

[ GDC authentication documentation ]

The GDC offers both “controlled-access” and “open” data. As of this writing, only data stored as files is
“controlled-access”; that is, metadata accessible via the GDC is all “open” data and some files are “open” and
some are “controlled-access”. Controlled-access data are only available after going through the process of
obtaining access.

After controlled-access to one or more datasets has been granted, logging into the GDC web portal will
allow you to access a GDC authentication token, which can be downloaded and then used to access available
controlled-access data via the GenomicDataCommons package.

The GenomicDataCommons uses authentication tokens only for downloading data (see transfer and gdcdata
documentation). The package includes a helper function, gdc_token, that looks for the token to be stored in
one of three ways (resolved in this order):

1. As a string stored in the environment variable, GDC_TOKEN
2. As a file, stored in the file named by the environment variable, GDC_TOKEN_FILE

https://docs.gdc.cancer.gov/API/Users_Guide/Search_and_Retrieval/#facets
https://gdc.cancer.gov/access-data/obtaining-access-controlled-data
https://gdc.cancer.gov/access-data/obtaining-access-controlled-data
https://docs.gdc.cancer.gov/Data_Portal/Users_Guide/Authentication/#gdc-authentication-tokens
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3. In a file in the user home directory, called .gdc_token

As a concrete example:
token = gdc_token()
transfer(...,token=token)
# or
transfer(...,token=get_token())

5.6.2 Datafile access and download

The gdcdata function takes a character vector of one or more file ids. A simple way of producing such a
vector is to produce a manifest data frame and then pass in the first column, which will contain file ids.
fnames = gdcdata(manifest_df$id[1:2],progress=FALSE)

Note that for controlled-access data, a GDC authentication token is required. Using the BiocParallel
package may be useful for downloading in parallel, particularly for large numbers of smallish files.

The bulk download functionality is only efficient (as of v1.2.0 of the GDC Data Transfer Tool) for relatively
large files, so use this approach only when transferring BAM files or larger VCF files, for example. Otherwise,
consider using the approach shown above, perhaps in parallel.
fnames = gdcdata(manifest_df$id[3:10], access_method = 'client')

5.7 Sequence Read Archive

The SRAdbV2 package is currently available from GitHub and is under active development. Either the
devtools package or the BiocManager package can be used for easy installation.
install.packages('BiocManager')
BiocManager::install('seandavi/SRAdbV2')

5.7.1 Usage

5.7.1.1 Loading the library

library(SRAdbV2)
#> Loading required package: R6

5.7.1.2 The Omicidx

The entrypoint for using the SRAdbV2 system is the Omicidx, an R6 class. To start, create a new instance
of the class.
oidx = Omicidx$new()

Typing oidx$ and then TAB will give possible completions. Note the “search” completion.

https://github.com/seandavi/SRAdbV2
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=BiocManager
https://cran.r-project.org/web/packages/R6/vignettes/Introduction.html
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5.7.1.3 Queries

Once an instance of Omicidx is created (here we will call the instance oidx), search capabilities are available
via oidx$search(). The one interesting parameter is the q parameter. This parameter takes a string
formatted as a Lucene query string. See below for Query syntax.
query=paste(

paste0('sample_taxon_id:', 10116),
'AND experiment_library_strategy:"rna seq"',
'AND experiment_library_source:transcriptomic',
'AND experiment_platform:illumina')

z = oidx$search(q=query,entity='full',size=100L)

The entity parameter is one of the SRA entity types available via the API. The size parameter is the
number of records that will be returned in each “chunk”.

5.7.1.4 Fetching results

Because result sets can be large, we have a special method that allows us to “scroll” through the results or to
simply get them en bloc. The first step for result retrieval, then, is to get a Scroller.
s = z$scroll()
s
#> <Scroller>
#> Public:
#> clone: function (deep = FALSE)
#> collate: function (limit = Inf)
#> count: active binding
#> fetched: active binding
#> has_next: function ()
#> initialize: function (search, progress = interactive())
#> reset: function ()
#> yield: function ()
#> Private:
#> .count: NULL
#> .fetched: 0
#> .last: FALSE
#> progress: FALSE
#> scroll: 1m
#> scroll_id: NULL
#> search: Searcher, R6

Methods such as s$count allow introspection into the available number of results, in this case, 8886 records.

The Scroller provides two different approaches to accessing the resulting data.

5.7.1.4.1 Collating entire result sets

The first approach to getting results of a query back into R is the most convenient, but for large result sets,
the entire dataset is loaded into memory and may take significant time if network connections are slow.
# for VERY large result sets, this may take
# quite a bit of time and/or memory. An
# alternative is to use s$chunk() to retrieve
# one batch of records at a time and process
# incrementally.
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res = s$collate(limit = 1000)
head(res)
#> # A tibble: 6 x 85
#> experiment_Insdc experiment_LastMet~ experiment_LastUpd~
#> <lgl> <dttm> <dttm>
#> 1 TRUE 2018-04-10 11:28:04 2018-04-10 11:52:20
#> 2 TRUE 2018-05-06 06:12:59 2018-05-06 06:42:38
#> 3 TRUE 2013-08-28 07:50:02 2014-04-13 06:08:21
#> 4 TRUE 2018-04-10 11:28:00 2018-04-10 11:34:38
#> 5 TRUE 2016-12-07 17:16:11 2017-06-21 23:05:24
#> 6 TRUE 2016-10-21 15:03:02 2016-10-22 13:55:27
#> # ... with 82 more variables: experiment_Published <dttm>,
#> # experiment_Received <dttm>, experiment_Status <chr>,
#> # experiment_accession <chr>, experiment_alias <chr>,
#> # experiment_center_name <chr>, experiment_identifiers <list>,
#> # experiment_instrument_model <chr>,
#> # experiment_library_construction_protocol <chr>,
#> # experiment_library_layout <chr>, experiment_library_name <chr>,
#> # experiment_library_selection <chr>, experiment_library_source <chr>,
#> # experiment_library_strategy <chr>, experiment_platform <chr>,
#> # experiment_title <chr>, run_FileDate <dbl>, run_FileMd5 <chr>,
#> # run_FileSize <int>, run_Insdc <lgl>, run_LastMetaUpdate <dttm>,
#> # run_LastUpdate <dttm>, run_Published <dttm>, run_Received <dttm>,
#> # run_Status <chr>, run_accession <chr>, run_alias <chr>,
#> # run_attributes <list>, run_bases <dbl>, run_center_name <chr>,
#> # run_identifiers <list>, run_nreads <int>, run_reads <list>,
#> # run_spot_length <int>, run_spots <int>, sample_BioSample <chr>,
#> # sample_Insdc <lgl>, sample_LastMetaUpdate <dttm>,
#> # sample_LastUpdate <dttm>, sample_Published <dttm>,
#> # sample_Received <dttm>, sample_Status <chr>, sample_accession <chr>,
#> # sample_alias <chr>, sample_attributes <list>,
#> # sample_center_name <chr>, sample_identifiers <list>,
#> # sample_organism <chr>, sample_taxon_id <int>, sample_title <chr>,
#> # study_BioProject <chr>, study_Insdc <lgl>,
#> # study_LastMetaUpdate <dttm>, study_LastUpdate <dttm>,
#> # study_Published <dttm>, study_Received <dttm>, study_Status <chr>,
#> # study_abstract <chr>, study_accession <chr>, study_alias <chr>,
#> # study_attributes <list>, study_center_name <chr>,
#> # study_description <chr>, study_identifiers <list>, study_title <chr>,
#> # study_type <chr>, experiment_attributes <list>,
#> # experiment_broker_name <chr>, experiment_design <chr>,
#> # run_broker_name <chr>, run_center <chr>, sample_broker_name <chr>,
#> # sample_description <chr>, study_broker_name <chr>,
#> # run_file_addons <list>, experiment_library_layout_length <dbl>,
#> # experiment_library_layout_sdev <chr>, sample_xrefs <list>,
#> # experiment_xrefs <list>, sample_GEO <chr>, study_GEO <chr>,
#> # study_xrefs <list>

Note that the scroller now reports that it has fetched (s$fetched) 1000 records.

To reuse a Scroller, we must reset it first.
s$reset()
s
#> <Scroller>
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#> Public:
#> clone: function (deep = FALSE)
#> collate: function (limit = Inf)
#> count: active binding
#> fetched: active binding
#> has_next: function ()
#> initialize: function (search, progress = interactive())
#> reset: function ()
#> yield: function ()
#> Private:
#> .count: 8886
#> .fetched: 0
#> .last: FALSE
#> progress: FALSE
#> scroll: 1m
#> scroll_id: NULL
#> search: Searcher, R6

5.7.1.4.2 Yielding chunks

The second approach is to iterate through results using the yield method. This approach allows the user to
perform processing on chunks of data as they arrive in R.
j = 0
## fetch only 500 records, but
## `yield` will return NULL
## after ALL records have been fetched
while(s$fetched < 500) {

res = s$yield()
# do something interesting with `res` here if you like
j = j + 1
message(sprintf('total of %d fetched records, loop iteration # %d', s$fetched, j))

}
#> total of 100 fetched records, loop iteration # 1
#> total of 200 fetched records, loop iteration # 2
#> total of 300 fetched records, loop iteration # 3
#> total of 400 fetched records, loop iteration # 4
#> total of 500 fetched records, loop iteration # 5

The Scroller also has a has_next() method that will report TRUE if the result set has not been fully fetched.
Using the reset() method will move the cursor back to the beginning of the result set.

5.7.2 Query syntax

5.7.2.1 Terms

A query is broken up into terms and operators. There are two types of terms: Single Terms and Phrases. A
Single Term is a single word such as “test” or “hello”. A Phrase is a group of words surrounded by double
quotes such as “hello dolly”. Multiple terms can be combined together with Boolean operators to form a
more complex query (see below).
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5.7.2.2 Fields

Queries support fielded data. When performing a search you can either specify a field, or use the default
field. The field names and default field is implementation specific. You can search any field by typing the
field name followed by a colon “:” and then the term you are looking for. As an example, let’s assume a
Lucene index contains two fields, title and abstract. If you want to find the document entitled “The Right
Way” which contains the text “don’t go this way” in the abstract, you can enter:

title:"The Right Way" AND abstract:go

or

Note: The field is only valid for the term that it directly precedes, so the query

title:Do it right

will only find “Do” in the title field. It will find “it” and “right” in any other fields.

5.7.2.3 Wildcard Searches

Lucene supports single and multiple character wildcard searches within single terms (not within phrase
queries). To perform a single character wildcard search use the “?” symbol. To perform a multiple character
wildcard search use the “*" symbol. The single character wildcard search looks for terms that match that
with the single character replaced. For example, to search for “text” or “test” you can use the search:

te?t

Multiple character wildcard searches looks for 0 or more characters. For example, to search for test, tests or
tester, you can use the search:

test*

You can also use the wildcard searches in the middle of a term.

te*t

Note: You cannot use a * or ? symbol as the first character of a search.

5.7.2.4 Fuzzy Searches

Lucene supports fuzzy searches based on the Levenshtein Distance, or Edit Distance algorithm. To do a fuzzy
search use the tilde, “~”, symbol at the end of a Single word Term. For example to search for a term similar
in spelling to “roam” use the fuzzy search:

roam~

This search will find terms like foam and roams.

Starting with Lucene 1.9 an additional (optional) parameter can specify the required similarity. The value is
between 0 and 1, with a value closer to 1 only terms with a higher similarity will be matched. For example:

roam~0.8

The default that is used if the parameter is not given is 0.5.

5.7.2.5 Proximity Searches

Lucene supports finding words are a within a specific distance away. To do a proximity search use the tilde,
“~”, symbol at the end of a Phrase. For example to search for a “apache” and “jakarta” within 10 words of
each other in a document use the search:
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"jakarta apache"~10

5.7.2.6 Range Searches

Range Queries allow one to match documents whose field(s) values are between the lower and upper bound
specified by the Range Query. Range Queries can be inclusive or exclusive of the upper and lower bounds.
Sorting is done lexicographically.

mod_date:[20020101 TO 20030101]

This will find documents whose mod_date fields have values between 20020101 and 20030101, inclusive. Note
that Range Queries are not reserved for date fields. You could also use range queries with non-date fields:

title:{Aida TO Carmen}

This will find all documents whose titles are between Aida and Carmen, but not including Aida and Carmen.
Inclusive range queries are denoted by square brackets. Exclusive range queries are denoted by curly brackets.

5.7.2.7 Boolean Operators

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, “+”, OR,
NOT and “-” as Boolean operators(Note: Boolean operators must be ALL CAPS).

5.7.2.7.1 OR

The OR operator is the default conjunction operator. This means that if there is no Boolean operator between
two terms, the OR operator is used. The OR operator links two terms and finds a matching document if
either of the terms exist in a document. This is equivalent to a union using sets. The symbol || can be used
in place of the word OR.

To search for documents that contain either “jakarta apache” or just “jakarta” use the query:

"jakarta apache" jakarta

or

"jakarta apache" OR jakarta

The AND operator matches documents where both terms exist anywhere in the text of a single document.
This is equivalent to an intersection using sets. The symbol && can be used in place of the word AND. To
search for documents that contain “jakarta apache” and “Apache Lucene” use the query:

“jakarta apache” AND “Apache Lucene”

5.7.2.7.2 +

The “+” or required operator requires that the term after the “+” symbol exist somewhere in a the field of a
single document. To search for documents that must contain “jakarta” and may contain “lucene” use the
query:

+jakarta lucene

5.7.2.7.3 NOT

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a difference
using sets. The symbol ! can be used in place of the word NOT. To search for documents that contain
“jakarta apache” but not “Apache Lucene” use the query:
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"jakarta apache" NOT "Apache Lucene"

Note: The NOT operator cannot be used with just one term. For example, the following search will return
no results:

NOT "jakarta apache"

5.7.2.7.4 -

The “-” or prohibit operator excludes documents that contain the term after the “-” symbol. To search for
documents that contain “jakarta apache” but not “Apache Lucene” use the query:

"jakarta apache" -"Apache Lucene"

5.7.2.8 Grouping

Lucene supports using parentheses to group clauses to form sub queries. This can be very useful if you want
to control the boolean logic for a query. To search for either “jakarta” or “apache” and “website” use the
query:

(jakarta OR apache) AND website

This eliminates any confusion and makes sure you that website must exist and either term jakarta or apache
may exist.

Lucene supports using parentheses to group multiple clauses to a single field.

To search for a title that contains both the word “return” and the phrase “pink panther” use the query:

title:(+return +"pink panther")

5.7.2.9 Escaping Special Characters

Lucene supports escaping special characters that are part of the query syntax. The current list special
characters are

+ - && || ! ( ) { } [ ] ^ " ~ * ? : \

To escape these character use the before the character. For example to search for (1+1):2 use the query:

\(1\+1\)\:2

5.7.3 Using the raw API without R/Bioconductor

The SRAdbV2 is a client to a high-performance web-based API. As such, the web API is perfectly usable
from either a simple test page, accessible here:
sra_browse_API()

The web-based API provides a useful interface for experiment with queries. It also returns URLs associated
with the example queries, facilitating querying with other tools like curl or wget

The API is described using the OpenAPI standard, also known as Swagger. Tooling exists to quickly scaffold
clients in any language (basically) based on the json available here:
sra_get_swagger_json_url()
#> [1] "https://api-omicidx.cancerdatasci.org/sra/1.0/swagger.json"

https://swagger.io/
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5.8 Accessing The Cancer Genome Atlas (TCGA)

We summarize two approaches to accessing TCGA data:

1. TCGAbiolinks:
a. data access through GenomicDataCommons
b. provides data both from the legacy Firehose pipeline used by the TCGA publications (alignments

based on hg18 and hg19 builds2), and the GDC harmonized GRCh38 pipeline3.
c. downloads files from the Genomic Data Commons, and provides conversion to (Ranged)SummarizedExperiment

where possible
2. curatedTCGAData:

a. data access through ExperimentHub
b. provides data from the legacy Firehose pipeline4

c. provides individual assays as (Ranged)SummarizedExperiment and RaggedExperiment, integrates
multiple assays within and across cancer types using MultiAssayExperiment

5.8.1 TCGAbiolinks

We demonstrate here generating a RangedSummarizedExperiment for RNA-seq data from adrenocortical
carcinoma (ACC). For additional information and options, see the TCGAbiolinks vignettes5.

Load packages:

Search for matching data:
library(TCGAbiolinks)
library(SummarizedExperiment)
query <- GDCquery(project = "TCGA-ACC",

data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "Illumina HiSeq",
file.type = "normalized_results",
experimental.strategy = "RNA-Seq",
legacy = TRUE)

Download data and convert it to RangedSummarizedExperiment:
gdcdir <- file.path("Waldron_PublicData", "GDCdata")
GDCdownload(query, method = "api", files.per.chunk = 10,

directory = gdcdir)
ACCse <- GDCprepare(query, directory = gdcdir)
ACCse

5.8.2 curatedTCGAData: Curated Data From The Cancer Genome Atlas as
MultiAssayExperiment Objects

curatedTCGAData does not interface with the Genomic Data Commons, but downloads data from Biocon-
ductor’s ExperimentHub.
library(curatedTCGAData)
library(MultiAssayExperiment)

2https://confluence.broadinstitute.org/display/GDAC/FAQ#FAQ-Q%C2%A0Whatreferencegenomebuildareyouusing
3https://gdc.cancer.gov/about-data/data-harmonization-and-generation/genomic-data-harmonization-0
4https://confluence.broadinstitute.org/display/GDAC/FAQ#FAQ-Q%C2%A0Whatreferencegenomebuildareyouusing
5https://bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/download_prepare.html

http://bioconductor.org/packages/TCGAbiolinks
http://bioconductor.org/packages/GenomicDataCommons
http://bioconductor.org/packages/curatedTCGAData
http://bioconductor.org/packages/ExperimentHub
http://bioconductor.org/packages/curatedTCGAData
http://bioconductor.org/packages/ExperimentHub
https://confluence.broadinstitute.org/display/GDAC/FAQ#FAQ-Q%C2%A0Whatreferencegenomebuildareyouusing
https://gdc.cancer.gov/about-data/data-harmonization-and-generation/genomic-data-harmonization-0
https://confluence.broadinstitute.org/display/GDAC/FAQ#FAQ-Q%C2%A0Whatreferencegenomebuildareyouusing
https://bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/download_prepare.html
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By default, the curatedTCGAData() function will only show available datasets, and not download anything.
The arguments are shown here only for demonstration, the same result is obtained with no arguments:
curatedTCGAData(diseaseCode = "*", assays = "*")
#> Please see the list below for available cohorts and assays
#> Available Cancer codes:
#> ACC BLCA BRCA CESC CHOL COAD DLBC ESCA GBM HNSC KICH
#> KIRC KIRP LAML LGG LIHC LUAD LUSC MESO OV PAAD PCPG
#> PRAD READ SARC SKCM STAD TGCT THCA THYM UCEC UCS UVM
#> Available Data Types:
#> CNACGH CNASeq CNASNP CNVSNP GISTICA GISTICT
#> Methylation miRNAArray miRNASeqGene mRNAArray
#> Mutation RNASeq2GeneNorm RNASeqGene RPPAArray

Check potential files to be downloaded for adrenocortical carcinoma (ACC):
curatedTCGAData(diseaseCode = "ACC")
#> ACC_CNASNP
#> "ACC_CNASNP-20160128.rda"
#> ACC_CNVSNP
#> "ACC_CNVSNP-20160128.rda"
#> ACC_GISTIC_AllByGene
#> "ACC_GISTIC_AllByGene-20160128.rda"
#> ACC_GISTIC_ThresholdedByGene
#> "ACC_GISTIC_ThresholdedByGene-20160128.rda"
#> ACC_Methylation
#> "ACC_Methylation-20160128.rda"
#> ACC_miRNASeqGene
#> "ACC_miRNASeqGene-20160128.rda"
#> ACC_Mutation
#> "ACC_Mutation-20160128.rda"
#> ACC_RNASeq2GeneNorm
#> "ACC_RNASeq2GeneNorm-20160128.rda"
#> ACC_RPPAArray
#> "ACC_RPPAArray-20160128.rda"

Actually download the reverse phase protein array (RPPA) and RNA-seq data for ACC
ACCmae <- curatedTCGAData("ACC", c("RPPAArray", "RNASeq2GeneNorm"),

dry.run=FALSE)
ACCmae
#> A MultiAssayExperiment object of 2 listed
#> experiments with user-defined names and respective classes.
#> Containing an ExperimentList class object of length 2:
#> [1] ACC_RNASeq2GeneNorm-20160128: SummarizedExperiment with 20501 rows and 79 columns
#> [2] ACC_RPPAArray-20160128: SummarizedExperiment with 192 rows and 46 columns
#> Features:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample availability DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices

Note. Data will be downloaded the first time the above command is run; subsequent times it will be loaded
from local cache.
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This object contains 822 columns of clinical, pathological, specimen, and subtypes data in its colData, merged
from all available data levels (1-4) of the Firehose pipeline:
dim(colData(ACCmae))
#> [1] 79 822
head(colnames(colData(ACCmae)))
#> [1] "patientID" "years_to_birth" "vital_status"
#> [4] "days_to_death" "days_to_last_followup" "tumor_tissue_site"

See the MultiAssayExperiment vignette (Ramos et al. 2017) and the Workflow for Multi-omics Analysis with
MultiAssayExperiment workshop for details on using this object.

5.8.2.1 Subtype information

Some cancer datasets contain associated subtype information within the clinical datasets provided. This
subtype information is included in the metadata of colData of the MultiAssayExperiment object. To obtain
these variable names, run the metadata function on the colData of the object such as:
head(metadata(colData(ACCmae))[["subtypes"]])
#> ACC_annotations ACC_subtype
#> 1 Patient_ID SAMPLE
#> 2 histological_subtypes Histology
#> 3 mrna_subtypes C1A/C1B
#> 4 mrna_subtypes mRNA_K4
#> 5 cimp MethyLevel
#> 6 microrna_subtypes miRNA cluster

5.9 recount: Reproducible RNA-seq Analysis Using recount2

The recount(Collado-Torres et al. 2017) package provides uniformly processed RangedSummarizedExperiment
objects at the gene, exon, or exon-exon junctions level, the raw counts, the phenotype metadata used,
the urls to sample coverage bigWig files and mean coverage bigWig file, for every study available. The
RangedSummarizedExperiment objects can be used for differential expression analysis. These are also
accessible through a web interface.6

#> No methods found in package 'IRanges' for request: 'subset' when loading 'derfinder'

recount provides a search function:
library(recount)
project_info <- abstract_search('GSE32465')

It is not an ExperimentHub package, so downloading and serializing is slightly more involved in involves two
steps: first, download the gene-level RangedSummarizedExperiment data:
download_study(project_info$project)
#> 2018-07-25 18:02:12 downloading file rse_gene.Rdata to SRP009615

followed by loading the data
load(file.path(project_info$project, 'rse_gene.Rdata'))

6https://jhubiostatistics.shinyapps.io/recount/

http://bioconductor.org/packages/MultiAssayExperiment
http://bioconductor.org/packages/recount
http://bioconductor.org/packages/recount
https://jhubiostatistics.shinyapps.io/recount/
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5.10 curated*Data packages for standardized cancer transcrip-
tomes

There are focused databases of cancer microarray data for several cancer types, which can be useful for
researchers of those cancer types or for methodological development:

• curatedOvarianData(Ganzfried et al. 2013): Clinically Annotated Data for the Ovarian Cancer
Transcriptome (data available with additional options through the MetaGxOvarian package).

• curatedBladderData: Clinically Annotated Data for the Bladder Cancer Transcriptome
• curatedCRCData: Clinically Annotated Data for the Colorectal Cancer Transcriptome

These provide data from the Gene Expression Omnibus and other sources, but use a formally vocabulary for
clinicopathological data and use a common pipeline for preprocessing of microarray data (for Affymetrix,
other for other platforms the processed data are provided as processed by original study authors), merging
probesets, and mapping to gene symbols. The pipeline is described by Ganzfried et al. (2013).

5.11 Microbiome data

Bioconductor provides curated resources of microbiome data. Most microbiome data are generated either by
targeted amplicon sequencing (usually of variable regions of the 16S ribosomal RNA gene) or by metagenomic
shotgun sequencing (MGX). These two approaches are analyzed by different sequence analysis tools, but
downstream statistical and ecological analysis can involve any of the following types of data:

• taxonomic abundance at different levels of the taxonomic hierarchy
• phylogenetic distances and the phylogenetic tree of life
• metabolic potential of the microbiome
• abundance of microbial genes and gene families

A review of types and properties of microbiome data is provided by (Morgan and Huttenhower 2012).

5.11.1 curatedMetagenomicData: Curated and processed metagenomic data
through ExperimentHub

curatedMetagenomicData(Pasolli et al. 2017) provides 6 types of processed data for >30 publicly available
whole-metagenome shotgun sequencing datasets (obtained from the Sequence Read Archive):

1. Species-level taxonomic profiles, expressed as relative abundance from kingdom to strain level
2. Presence of unique, clade-specific markers
3. Abundance of unique, clade-specific markers
4. Abundance of gene families
5. Metabolic pathway coverage
6. Metabolic pathway abundance

Types 1-3 are generated by MetaPhlAn2; 4-6 are generated by HUMAnN2.

Currently, curatedMetagenomicData provides:

• 6386 samples from 31 datasets, primarily of the human gut but including body sites profiled in the
Human Microbiome Project

• Processed data from whole-metagenome shotgun metagenomics, with manually-curated metadata, as
integrated and documented Bioconductor ExpressionSet objects

• ~80 fields of specimen metadata from original papers, supplementary files, and websites, with manual
curation to standardize annotations

http://bioconductor.org/packages/curatedOvarianData
http://bioconductor.org/packages/MetaGxOvarian
http://bioconductor.org/packages/curatedBladderData
http://bioconductor.org/packages/curatedCRCData
http://huttenhower.sph.harvard.edu/metaphlan2
http://huttenhower.sph.harvard.edu/humann2
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• Processing of data through the MetaPhlAn2 pipeline for taxonomic abundance, and HUMAnN2 pipeline
for metabolic analysis

• These represent ~100TB of raw sequencing data, but the processed data provided are much smaller.

These datasets are documented in the reference manual.

This is an ExperimentHub package, and its main workhorse function is curatedMetagenomicData():

The manually curated metadata for all available samples are provided in a single table combined_metadata:
library(curatedMetagenomicData)
?combined_metadata
View(data.frame(combined_metadata))

The main function provides a list of ExpressionSet objects:
oral <- c("BritoIL_2016.metaphlan_bugs_list.oralcavity",

"Castro-NallarE_2015.metaphlan_bugs_list.oralcavity")
esl <- curatedMetagenomicData(oral, dryrun = FALSE)
#> Working on BritoIL_2016.metaphlan_bugs_list.oralcavity
#> snapshotDate(): 2018-07-17
#> see ?curatedMetagenomicData and browseVignettes('curatedMetagenomicData') for documentation
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.ExperimentHub/1179'
#> Working on Castro-NallarE_2015.metaphlan_bugs_list.oralcavity
#> snapshotDate(): 2018-07-17
#> see ?curatedMetagenomicData and browseVignettes('curatedMetagenomicData') for documentation
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.ExperimentHub/391'

esl
#> List of length 2
#> names(2): BritoIL_2016.metaphlan_bugs_list.oralcavity ...

These ExpressionSet objects can also be converted to phyloseq object for ecological analysis and differential
abundance analysis using the DESeq2 package, using the ExpressionSet2phyloseq() function:
ExpressionSet2phyloseq( esl[[1]], phylogenetictree = TRUE)
#> Loading required namespace: phyloseq
#> phyloseq-class experiment-level object
#> otu_table() OTU Table: [ 535 taxa and 140 samples ]
#> sample_data() Sample Data: [ 140 samples by 17 sample variables ]
#> tax_table() Taxonomy Table: [ 535 taxa by 8 taxonomic ranks ]
#> phy_tree() Phylogenetic Tree: [ 535 tips and 534 internal nodes ]

See the documentation of phyloseq for more on ecological and differential abundance analysis of the microbiome.

5.11.2 HMP16SData: 16S rRNA Sequencing Data from the Human Micro-
biome Project

suppressPackageStartupMessages(library(HMP16SData))
#> snapshotDate(): 2018-07-17

HMP16SData(Schiffer et al. 2018) is a Bioconductor ExperimentData package of the Human Microbiome
Project (HMP) 16S rRNA sequencing data. Taxonomic count data files are provided as downloaded from

http://huttenhower.sph.harvard.edu/metaphlan2
http://huttenhower.sph.harvard.edu/humann2
https://bioconductor.org/packages/devel/data/experiment/manuals/curatedMetagenomicData/man/curatedMetagenomicData.pdf
http://bioconductor.org/packages/ExperimentHub
http://bioconductor.org/packages/phyloseq
http://bioconductor.org/packages/DESeq2
http://bioconductor.org/packages/phyloseq
http://bioconductor.org/packages/HMP16SData
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the HMP Data Analysis and Coordination Center from its QIIME pipeline. Processed data is provided
as SummarizedExperiment class objects via ExperimentHub. Like other ExperimentHub-based packages,
a convenience function does downloading, automatic local caching, and serializing of a Bioconductor data
class. This returns taxonomic counts from the V1-3 variable region of the 16S rRNA gene, along with the
unrestricted participant data and phylogenetic tree.
V13()
#> snapshotDate(): 2018-07-17
#> see ?HMP16SData and browseVignettes('HMP16SData') for documentation
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.ExperimentHub/1117'
#> class: SummarizedExperiment
#> dim: 43140 2898
#> metadata(2): experimentData phylogeneticTree
#> assays(1): 16SrRNA
#> rownames(43140): OTU_97.1 OTU_97.10 ... OTU_97.9997 OTU_97.9999
#> rowData names(7): CONSENSUS_LINEAGE SUPERKINGDOM ... FAMILY GENUS
#> colnames(2898): 700013549 700014386 ... 700114963 700114965
#> colData names(7): RSID VISITNO ... HMP_BODY_SUBSITE SRS_SAMPLE_ID

This can also be converted to phyloseq for ecological and differential abundance analysis; see the HMP16SData
vignette for details.

5.12 Pharmacogenomics

Pharmacogenomics holds great promise for the development of biomarkers of drug response and the design of
new therapeutic options, which are key challenges in precision medicine. However, such data are scattered and
lack standards for efficient access and analysis, consequently preventing the realization of the full potential
of pharmacogenomics. To address these issues, we implemented PharmacoGx, an easy-to-use, open source
package for integrative analysis of multiple pharmacogenomic datasets. ~PharmacoGx‘ provides a unified
framework for downloading and analyzing large pharmacogenomic datasets which are extensively curated to
ensure maximum overlap and consistency.

Examples of PharmacoGx usage in biomedical research can be found in the following publications:

• Smirnov et al. PharmacoGx: an R package for analysis of large pharmacogenomic datasets." Bioinfor-
matics (2015): 1244-1246.

• Safikhani et al., Assessment of pharmacogenomic agreement, F1000 Research (2017)
• Safikhani et al., Revisiting inconsistency in large pharmacogenomic studies, F1000 Research (2017)
• Yao et al., Tissue specificity of in vitro drug sensitivity, JAMIA (2017)
• Safikhani et al., Gene isoforms as expression-based biomarkers predictive of drug response in vitro,

Nature Communications (2017)
• El-Hachem et al., Integrative Cancer Pharmacogenomics to Infer Large-Scale Drug Taxonomy, Cancer

Research (2017)

5.12.1 Getting started

Let us first load the PharmacoGx library.
library(PharmacoGx)
#> Warning in fun(libname, pkgname): couldn't connect to display ":0"

http://bioconductor.org/packages/ExperimentHub
http://bioconductor.org/packages/phyloseq
http://bioconductor.org/packages/HMP16SData
http://bioconductor.org/packages/PharmacoGx
https://academic.oup.com/bioinformatics/article/32/8/1244/1744214/PharmacoGx-an-R-package-for-analysis-of-large
https://academic.oup.com/bioinformatics/article/32/8/1244/1744214/PharmacoGx-an-R-package-for-analysis-of-large
https://f1000research.com/articles/5-825/v1
https://f1000research.com/articles/5-2333/v3
https://doi.org/10.1093/jamia/ocx062
https://www.nature.com/articles/s41467-017-01153-8
https://www.nature.com/articles/s41467-017-01153-8
http://cancerres.aacrjournals.org/content/77/11/3057.long
http://cancerres.aacrjournals.org/content/77/11/3057.long
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We can now access large-scale preclinical pharmacogenomic datasets that have been fully curated for ease of
use.

5.12.2 Overview of PharmacoGx datasets (PharmacoSets)

To efficiently store and analyze large pharmacogenomic datasets, we developed the PharmacoSet class (also
referred to as PSet), which acts as a data container storing pharmacological and molecular data along with
experimental metadata (detailed structure provided in Supplementary materials). This class enables efficient
implementation of curated annotations for cell lines, drug compounds and molecular features, which facilitates
comparisons between different datasets stored as PharmacoSet objects.

We have made the PharmacoSet objects of the curated datasets available for download using functions provided
in the package. A table of available PharmacoSet objects can be obtained by using the availablePSets function.
Any of the PharmacoSets in the table can then be downloaded by calling downloadPSet, which saves the
datasets into a directory of the users choice, and returns the data into the R session.

Structure of the PharmacoSet class

To get a list of all the available PharmacoSets in PharmacoGx, we can use the availablePSets‘ function,
which returns a table providing key information for each dataset.
availablePSets(saveDir=file.path(".", "Waldron_PublicData"))
#> PSet.Name Dataset.Type Available.Molecular.Profiles
#> CCLE_2013 CCLE_2013 sensitivity rna/mutation
#> CCLE CCLE sensitivity rna/rnaseq/mutation/cnv
#> GDSC_2013 GDSC_2013 sensitivity rna/mutation
#> GDSC GDSC sensitivity rna/rna2/mutation/fusion/cnv
#> GDSC1000 GDSC1000 sensitivity rna
#> gCSI gCSI sensitivity rnaseq/cnv
#> FIMM FIMM sensitivity
#> CTRPv2 CTRPv2 sensitivity
#> CMAP CMAP perturbation rna
#> L1000_compounds L1000_compounds perturbation rna
#> L1000_genetic L1000_genetic perturbation rna
#> Date.Updated
#> CCLE_2013 Tue Sep 15 18:50:07 2015
#> CCLE Thu Dec 10 18:17:14 2015
#> GDSC_2013 Mon Oct 5 16:07:54 2015
#> GDSC Wed Dec 30 10:44:21 2015
#> GDSC1000 Thu Aug 25 11:13:00 2016
#> gCSI Mon Jun 13 18:50:12 2016
#> FIMM Mon Oct 3 17:14:00 2016
#> CTRPv2 Thu Aug 25 11:15:00 2016
#> CMAP Mon Sep 21 02:38:45 2015
#> L1000_compounds Mon Jan 25 12:51:00 2016
#> L1000_genetic Mon Jan 25 12:51:00 2016
#> URL
#> CCLE_2013 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CCLE_Nature2013.RData
#> CCLE https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CCLE.RData
#> GDSC_2013 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CGP_Nature2013.RData
#> GDSC https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/GDSC.RData
#> GDSC1000 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/GDSC1000.RData
#> gCSI https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/gCSI.RData
#> FIMM https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/FIMM.RData
#> CTRPv2 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CTRPv2.RData

Waldron_PublicData/PharmacoSet_structure.png
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#> CMAP https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CMAP.RData
#> L1000_compounds https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/L1000_compounds.RData
#> L1000_genetic https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/L1000_genetic.RData

There are currently 11 datasets available in PharmacoGx, including 8 sensitivity datasets and 3 perturbation
datasets (see below).

5.12.2.1 Drug Sensitivity Datasets

Drug sensitivity datasets refer to pharmacogenomic data where cancer cells are molecularly profiled at baseline
(before drug treatment), and the effect of drug treatment on cell viability is measured using a pharmacological
assay (e.g., Cell Titer-Glo). These datasets can be used for biomarker discovery by correlating the molecular
features of cancer cells to their response to drugs of interest.

Schematic view of the drug sensitivity datasets.
psets <- availablePSets(saveDir=file.path(".", "Waldron_PublicData"))
psets[psets[ , "Dataset.Type"] == "sensitivity", ]
#> PSet.Name Dataset.Type Available.Molecular.Profiles
#> CCLE_2013 CCLE_2013 sensitivity rna/mutation
#> CCLE CCLE sensitivity rna/rnaseq/mutation/cnv
#> GDSC_2013 GDSC_2013 sensitivity rna/mutation
#> GDSC GDSC sensitivity rna/rna2/mutation/fusion/cnv
#> GDSC1000 GDSC1000 sensitivity rna
#> gCSI gCSI sensitivity rnaseq/cnv
#> FIMM FIMM sensitivity
#> CTRPv2 CTRPv2 sensitivity
#> Date.Updated
#> CCLE_2013 Tue Sep 15 18:50:07 2015
#> CCLE Thu Dec 10 18:17:14 2015
#> GDSC_2013 Mon Oct 5 16:07:54 2015
#> GDSC Wed Dec 30 10:44:21 2015
#> GDSC1000 Thu Aug 25 11:13:00 2016
#> gCSI Mon Jun 13 18:50:12 2016
#> FIMM Mon Oct 3 17:14:00 2016
#> CTRPv2 Thu Aug 25 11:15:00 2016
#> URL
#> CCLE_2013 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CCLE_Nature2013.RData
#> CCLE https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CCLE.RData
#> GDSC_2013 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CGP_Nature2013.RData
#> GDSC https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/GDSC.RData
#> GDSC1000 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/GDSC1000.RData
#> gCSI https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/gCSI.RData
#> FIMM https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/FIMM.RData
#> CTRPv2 https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CTRPv2.RData

Notably, the Genomics of Drug Sensitivity in Cancer GDSC and the Cancer Cell Line Encyclope-
dia CCLE are large drug sensitivity datasets published in seminal studies in Nature, Garnett et al.,
https://www.nature.com/articles/nature11005, Nature (2012) and Barretina et al., The Cancer Cell Line
Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature (2012), respectively.

Waldron_PublicData/Drug_sensitivity.png
https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ccle
https://www.nature.com/articles/nature11005
https://www.nature.com/articles/nature11005
https://www.nature.com/articles/nature11003
https://www.nature.com/articles/nature11003
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5.12.2.2 Drug Perturbation Datasets

Drug perturbation datasets refer to pharmacogenomic data where gene expression profiles are measured
before and after short-term (e.g., 6h) drug treatment to identify genes that are up- and down-regulated due
to the drug treatment. These datasets can be to classify drug (drug taxonomy), infer their mechanism of
action, or find drugs with similar effects (drug repurposing).

Schematic view of drug perturbation datasets
psets <- availablePSets(saveDir=file.path(".", "Waldron_PublicData"))
psets[psets[ , "Dataset.Type"] == "perturbation", ]
#> PSet.Name Dataset.Type Available.Molecular.Profiles
#> CMAP CMAP perturbation rna
#> L1000_compounds L1000_compounds perturbation rna
#> L1000_genetic L1000_genetic perturbation rna
#> Date.Updated
#> CMAP Mon Sep 21 02:38:45 2015
#> L1000_compounds Mon Jan 25 12:51:00 2016
#> L1000_genetic Mon Jan 25 12:51:00 2016
#> URL
#> CMAP https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/CMAP.RData
#> L1000_compounds https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/L1000_compounds.RData
#> L1000_genetic https://www.pmgenomics.ca/bhklab/sites/default/files/downloads/L1000_genetic.RData

Large drug perturbation data have been generated within the Connectivity Map Project CAMP, with
CMAPv2 and CMAPv3 available from PharmacoGx, published in Lamb et al., The Connectivity Map: Using
Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease, Science (2006) and Subramanian
et al., A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles, Cell (2017),
respectively.

5.12.3 Exploring drug sensitivity datasets

The Biomarker discovery from large pharmacogenomics datasets workshop demonstrates analyses of Pharma-
coGx data.
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Chapter 6

200: RNA-seq analysis is easy as 1-2-3
with limma, Glimma and edgeR

6.1 Instructor name and contact information

• Charity Law (law@wehi.edu.au)

6.2 Workshop Description

In this instructor-led live demo, we analyse RNA-sequencing data from the mouse mammary gland, demon-
strating use of the popular edgeR package to import, organise, filter and normalise the data, followed by the
limma package with its voom method, linear modelling and empirical Bayes moderation to assess differential
expression and graphical representations. This pipeline is further enhanced by the Glimma package which
enables interactive exploration of the results so that individual samples and genes can be examined by the user.
The complete analysis offered by these three packages highlights the ease with which researchers can turn the
raw counts from an RNA-sequencing experiment into biological insights using Bioconductor. The complete
workflow is available at http://master.bioconductor.org/packages/release/workflows/html/RNAseq123.html .

6.2.1 Pre-requisites

• Basic knowledge of RNA-sequencing
• Basic knowledge of R syntax, R object classes and object manipulation

6.2.2 Workshop Participation

Participants can watch the live demo, or may prefer to follow the demonstration by bringing their laptops
along. To follow the analysis on their own laptops, participants need to install the RNAseq123 workflow by
running
source("https://bioconductor.org/biocLite.R")
biocLite("RNAseq123")

in R. The relevant sequencing data should also be download in advance.
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url <- "https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE63310&format=file"
utils::download.file(url, destfile="GSE63310_RAW.tar", mode="wb")
utils::untar("GSE63310_RAW.tar", exdir = ".")
files <- c("GSM1545535_10_6_5_11.txt", "GSM1545536_9_6_5_11.txt", "GSM1545538_purep53.txt",

"GSM1545539_JMS8-2.txt", "GSM1545540_JMS8-3.txt", "GSM1545541_JMS8-4.txt",
"GSM1545542_JMS8-5.txt", "GSM1545544_JMS9-P7c.txt", "GSM1545545_JMS9-P8c.txt")

for(i in paste(files, ".gz", sep=""))
R.utils::gunzip(i, overwrite=TRUE)

Due to time restraints, extra help regarding R package installation and coding errors will not be addressed
during the workshop.

6.2.3 R / Bioconductor packages used

Bioconductor: limma, Glimma, edgeR, Mus.musculus
CRAN: RColorBrewer, gplots

6.2.4 Time outline

Activity Time
Introduction 5mins
Data packaging 10mins
Data pre-processing 15mins
Differential expression analysis 30mins

6.3 Workshop goals and objectives

The key steps to RNA-seq data analysis are described in this workshop with basic statistical theory of
methods used. The goal is to allow beginner-analysts of RNA-seq data to become familiar with each of the
steps involved, as well as completing a standard analysis pipeline from start to finish.

6.3.1 Learning goals

• learn how to analyse RNA-seq data
• identify methods for pre-processing data
• understand linear models used in differential expression analysis
• examine plots for data exploration and result representation

6.3.2 Learning objectives

• read in count data and format as a DGEList-object
• annotate Entrez gene identifiers with gene information
• filter out lowly expressed genes
• normalise gene expression values
• unsupervised clustering of samples (standard and interactive plots)
• linear modelling for comparisons of interest
• remove heteroscedascity
• examine the number of differentially expressed genes
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• mean-difference plots (standard and interactive plots)
• heatmaps

6.4 Introduction

RNA-sequencing (RNA-seq) has become the primary technology used for gene expression profiling, with the
genome-wide detection of differentially expressed genes between two or more conditions of interest one of
the most commonly asked questions by researchers. The edgeR and limma packages available from the
Bioconductor project offer a well-developed suite of statistical methods for dealing with this question for
RNA-seq data.

In this article, we describe an edgeR - limma workflow for analysing RNA-seq data that takes gene-level
counts as its input, and moves through pre-processing and exploratory data analysis before obtaining lists
of differentially expressed (DE) genes and gene signatures. This analysis is enhanced through the use of
interactive graphics from the Glimma package, that allows for a more detailed exploration of the data at
both the sample and gene-level than is possible using static R plots.

The experiment analysed in this workflow is from Sheridan et al. (2015) and consists of three cell populations
(basal, luminal progenitor (LP) and mature luminal (ML)) sorted from the mammary glands of female virgin
mice, each profiled in triplicate. RNA samples were sequenced across three batches on an Illumina HiSeq 2000
to obtain 100 base-pair single-end reads. The analysis outlined in this article assumes that reads obtained
from an RNA-seq experiment have been aligned to an appropriate reference genome and summarised into
counts associated with gene-specific regions. In this instance, reads were aligned to the mouse reference
genome (mm10) using the R based pipeline available in the Rsubread package (specifically the align
function followed by featureCounts for gene-level summarisation based on the in-built mm10 RefSeq-based
annotation).

Count data for these samples can be downloaded from the Gene Expression Omnibus (GEO) http://www.
ncbi.nlm.nih.gov/geo/ using GEO Series accession number GSE63310. Further information on experimental
design and sample preparation is also available from GEO under this accession number.
suppressPackageStartupMessages({

library(limma)
library(Glimma)
library(edgeR)
library(Mus.musculus)

})

6.5 Data packaging

dir.create("Law_RNAseq123")
#> Warning in dir.create("Law_RNAseq123"): 'Law_RNAseq123' already exists
setwd("Law_RNAseq123")

url <- "https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE63310&format=file"
utils::download.file(url, destfile="GSE63310_RAW.tar", mode="wb")
utils::untar("GSE63310_RAW.tar", exdir = ".")

files <- c("GSM1545535_10_6_5_11.txt", "GSM1545536_9_6_5_11.txt",
"GSM1545538_purep53.txt", "GSM1545539_JMS8-2.txt", "GSM1545540_JMS8-3.txt",
"GSM1545541_JMS8-4.txt", "GSM1545542_JMS8-5.txt", "GSM1545544_JMS9-P7c.txt",
"GSM1545545_JMS9-P8c.txt")

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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for(i in paste(files, ".gz", sep=""))
R.utils::gunzip(i, overwrite=TRUE)

6.5.1 Reading in count-data

To get started with this analysis, download the file GSE63310_RAW.tar available online from https:
//www.ncbi.nlm.nih.gov/geo/download/?acc=GSE63310&format=file, and extract the relevant files from
this archive. Each of these text files contains the raw gene-level counts for a given sample. Note that our
analysis only includes the basal, LP and ML samples from this experiment (see associated file names below).
read.delim(file.path("Law_RNAseq123", files[1]), nrow=5)
#> EntrezID GeneLength Count
#> 1 497097 3634 1
#> 2 100503874 3259 0
#> 3 100038431 1634 0
#> 4 19888 9747 0
#> 5 20671 3130 1

Whilst each of the nine text files can be read into R separately and combined into a matrix of counts, edgeR
offers a convenient way to do this in one step using the readDGE function. The resulting DGEList-object
contains a matrix of counts with 27,179 rows associated with unique Entrez gene identifiers (IDs) and nine
columns associated with the individual samples in the experiment.
x <- readDGE(file.path("Law_RNAseq123", files), columns=c(1,3))
class(x)
#> [1] "DGEList"
#> attr(,"package")
#> [1] "edgeR"
dim(x)
#> [1] 27179 9

If the counts from all samples were stored in a single file, the data can be read into R and then converted
into a DGEList-object using the DGEList function.

6.5.2 Organising sample information

For downstream analysis, sample-level information related to the experimental design needs to be associated
with the columns of the counts matrix. This should include experimental variables, both biological and
technical, that could have an effect on expression levels. Examples include cell type (basal, LP and ML in
this experiment), genotype (wild-type, knock-out), phenotype (disease status, sex, age), sample treatment
(drug, control) and batch information (date experiment was performed if samples were collected and analysed
at distinct time points) to name just a few.

Our DGEList-object contains a samples data frame that stores both cell type (or group) and batch (sequencing
lane) information, each of which consists of three distinct levels. Note that within x$samples, library sizes
are automatically calculated for each sample and normalisation factors are set to 1. For simplicity, we remove
the GEO sample IDs (GSM*) from the column names of our DGEList-object x.
samplenames <- substring(colnames(x), 12, nchar(colnames(x)))
samplenames
#> [1] "23/GSM1545535_10_6_5_11" "23/GSM1545536_9_6_5_11"
#> [3] "23/GSM1545538_purep53" "23/GSM1545539_JMS8-2"
#> [5] "23/GSM1545540_JMS8-3" "23/GSM1545541_JMS8-4"
#> [7] "23/GSM1545542_JMS8-5" "23/GSM1545544_JMS9-P7c"

https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE63310&format=file
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE63310&format=file
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#> [9] "23/GSM1545545_JMS9-P8c"
colnames(x) <- samplenames
group <- as.factor(c("LP", "ML", "Basal", "Basal", "ML", "LP",

"Basal", "ML", "LP"))
x$samples$group <- group
lane <- as.factor(rep(c("L004","L006","L008"), c(3,4,2)))
x$samples$lane <- lane
x$samples
#> files group
#> 23/GSM1545535_10_6_5_11 Law_RNAseq123/GSM1545535_10_6_5_11.txt LP
#> 23/GSM1545536_9_6_5_11 Law_RNAseq123/GSM1545536_9_6_5_11.txt ML
#> 23/GSM1545538_purep53 Law_RNAseq123/GSM1545538_purep53.txt Basal
#> 23/GSM1545539_JMS8-2 Law_RNAseq123/GSM1545539_JMS8-2.txt Basal
#> 23/GSM1545540_JMS8-3 Law_RNAseq123/GSM1545540_JMS8-3.txt ML
#> 23/GSM1545541_JMS8-4 Law_RNAseq123/GSM1545541_JMS8-4.txt LP
#> 23/GSM1545542_JMS8-5 Law_RNAseq123/GSM1545542_JMS8-5.txt Basal
#> 23/GSM1545544_JMS9-P7c Law_RNAseq123/GSM1545544_JMS9-P7c.txt ML
#> 23/GSM1545545_JMS9-P8c Law_RNAseq123/GSM1545545_JMS9-P8c.txt LP
#> lib.size norm.factors lane
#> 23/GSM1545535_10_6_5_11 32863052 1 L004
#> 23/GSM1545536_9_6_5_11 35335491 1 L004
#> 23/GSM1545538_purep53 57160817 1 L004
#> 23/GSM1545539_JMS8-2 51368625 1 L006
#> 23/GSM1545540_JMS8-3 75795034 1 L006
#> 23/GSM1545541_JMS8-4 60517657 1 L006
#> 23/GSM1545542_JMS8-5 55086324 1 L006
#> 23/GSM1545544_JMS9-P7c 21311068 1 L008
#> 23/GSM1545545_JMS9-P8c 19958838 1 L008

6.5.3 Organising gene annotations

A second data frame named genes in the DGEList-object is used to store gene-level information associated
with rows of the counts matrix. This information can be retrieved using organism specific packages such as
Mus.musculus for mouse (or Homo.sapiens for human) or the biomaRt package which interfaces the
Ensembl genome databases in order to perform gene annotation.

The type of information that can be retrieved includes gene symbols, gene names, chromosome names and
locations, Entrez gene IDs, Refseq gene IDs and Ensembl gene IDs to name just a few. biomaRt primarily
works off Ensembl gene IDs, whereas Mus.musculus packages information from various sources and allows
users to choose between many different gene IDs as the key.

The Entrez gene IDs available in our dataset were annotated using the Mus.musculus package to retrieve
associated gene symbols and chromosome information.
geneid <- rownames(x)
genes <- select(Mus.musculus, keys=geneid, columns=c("SYMBOL", "TXCHROM"),

keytype="ENTREZID")
head(genes)
#> ENTREZID SYMBOL TXCHROM
#> 1 497097 Xkr4 chr1
#> 2 100503874 Gm19938 <NA>
#> 3 100038431 Gm10568 <NA>
#> 4 19888 Rp1 chr1
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#> 5 20671 Sox17 chr1
#> 6 27395 Mrpl15 chr1

As with any gene ID, Entrez gene IDs may not map one-to-one to the gene information of interest. It is
important to check for duplicated gene IDs and to understand the source of duplication before resolving
them. Our gene annotation contains 28 genes that map to multiple chromosomes (e.g. gene Gm1987 is
associated with chr4 and chr4_JH584294_random and microRNA Mir5098 is associated with chr2, chr5,
chr8, chr11 and chr17 ). To resolve duplicate gene IDs one could combine all chromosome information from
the multi-mapped genes, such that gene Gm1987 would be is assigned to chr4 and chr4_JH584294_random,
or select one of the chromosomes to represent the gene with duplicate annotation. For simplicity we do the
latter, keeping only the first occurrence of each gene ID.
genes <- genes[!duplicated(genes$ENTREZID),]

In this example, the gene order is the same in both the annotation and the data object. If this is not the case
due to missing and/or rearranged gene IDs, the match function can be used to order genes correctly. The
data frame of gene annotations is then added to the data object and neatly packaged in a DGEList-object
containing raw count data with associated sample information and gene annotations.
x$genes <- genes
x
#> An object of class "DGEList"
#> $samples
#> files group
#> 23/GSM1545535_10_6_5_11 Law_RNAseq123/GSM1545535_10_6_5_11.txt LP
#> 23/GSM1545536_9_6_5_11 Law_RNAseq123/GSM1545536_9_6_5_11.txt ML
#> 23/GSM1545538_purep53 Law_RNAseq123/GSM1545538_purep53.txt Basal
#> 23/GSM1545539_JMS8-2 Law_RNAseq123/GSM1545539_JMS8-2.txt Basal
#> 23/GSM1545540_JMS8-3 Law_RNAseq123/GSM1545540_JMS8-3.txt ML
#> 23/GSM1545541_JMS8-4 Law_RNAseq123/GSM1545541_JMS8-4.txt LP
#> 23/GSM1545542_JMS8-5 Law_RNAseq123/GSM1545542_JMS8-5.txt Basal
#> 23/GSM1545544_JMS9-P7c Law_RNAseq123/GSM1545544_JMS9-P7c.txt ML
#> 23/GSM1545545_JMS9-P8c Law_RNAseq123/GSM1545545_JMS9-P8c.txt LP
#> lib.size norm.factors lane
#> 23/GSM1545535_10_6_5_11 32863052 1 L004
#> 23/GSM1545536_9_6_5_11 35335491 1 L004
#> 23/GSM1545538_purep53 57160817 1 L004
#> 23/GSM1545539_JMS8-2 51368625 1 L006
#> 23/GSM1545540_JMS8-3 75795034 1 L006
#> 23/GSM1545541_JMS8-4 60517657 1 L006
#> 23/GSM1545542_JMS8-5 55086324 1 L006
#> 23/GSM1545544_JMS9-P7c 21311068 1 L008
#> 23/GSM1545545_JMS9-P8c 19958838 1 L008
#>
#> $counts
#> Samples
#> Tags 23/GSM1545535_10_6_5_11 23/GSM1545536_9_6_5_11
#> 497097 1 2
#> 100503874 0 0
#> 100038431 0 0
#> 19888 0 1
#> 20671 1 1
#> Samples
#> Tags 23/GSM1545538_purep53 23/GSM1545539_JMS8-2
#> 497097 342 526
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#> 100503874 5 6
#> 100038431 0 0
#> 19888 0 0
#> 20671 76 40
#> Samples
#> Tags 23/GSM1545540_JMS8-3 23/GSM1545541_JMS8-4 23/GSM1545542_JMS8-5
#> 497097 3 3 535
#> 100503874 0 0 5
#> 100038431 0 0 1
#> 19888 17 2 0
#> 20671 33 14 98
#> Samples
#> Tags 23/GSM1545544_JMS9-P7c 23/GSM1545545_JMS9-P8c
#> 497097 2 0
#> 100503874 0 0
#> 100038431 0 0
#> 19888 1 0
#> 20671 18 8
#> 27174 more rows ...
#>
#> $genes
#> ENTREZID SYMBOL TXCHROM
#> 1 497097 Xkr4 chr1
#> 2 100503874 Gm19938 <NA>
#> 3 100038431 Gm10568 <NA>
#> 4 19888 Rp1 chr1
#> 5 20671 Sox17 chr1
#> 27174 more rows ...

6.6 Data pre-processing

6.6.1 Transformations from the raw-scale

For differential expression and related analyses, gene expression is rarely considered at the level of raw counts
since libraries sequenced at a greater depth will result in higher counts. Rather, it is common practice to
transform raw counts onto a scale that accounts for such library size differences. Popular transformations
include counts per million (CPM), log2-counts per million (log-CPM), reads per kilobase of transcript per
million (RPKM), and fragments per kilobase of transcript per million (FPKM).

In our analyses, CPM and log-CPM transformations are used regularly although they do not account for
feature length differences which RPKM and FPKM values do. Whilst RPKM and FPKM values can just as
well be used, CPM and log-CPM values can be calculated using a counts matrix alone and will suffice for the
type of comparisons we are interested in. Assuming that there are no differences in isoform usage between
conditions, differential expression analyses look at gene expression changes between conditions rather than
comparing expression across multiple genes or drawing conclusions on absolute levels of expression. In other
words, gene lengths remain constant for comparisons of interest and any observed differences are a result of
changes in condition rather than changes in gene length.

Here raw counts are converted to CPM and log-CPM values using the cpm function in edgeR, where
log-transformations use a prior count of 0.25 to avoid taking the log of zero. RPKM values are just as easily
calculated as CPM values using the rpkm function in edgeR if gene lengths are available.
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cpm <- cpm(x)
lcpm <- cpm(x, log=TRUE)

6.6.2 Removing genes that are lowly expressed

All datasets will include a mix of genes that are expressed and those that are not expressed. Whilst it is of
interest to examine genes that are expressed in one condition but not in another, some genes are unexpressed
throughout all samples. In fact, 19% of genes in this dataset have zero counts across all nine samples.
table(rowSums(x$counts==0)==9)
#>
#> FALSE TRUE
#> 22026 5153

Genes that are not expressed at a biologically meaningful level in any condition should be discarded to reduce
the subset of genes to those that are of interest, and to reduce the number of tests carried out downstream
when looking at differential expression. Upon examination of log-CPM values, it can be seen that a large
proportion of genes within each sample is unexpressed or lowly-expressed (shown in panel A of the next
figure). Using a nominal CPM value of 1 (which is equivalent to a log-CPM value of 0) genes are deemed to
be expressed if their expression is above this threshold, and unexpressed otherwise. Genes must be expressed
in at least one group (or in at least three samples across the entire experiment) to be kept for downstream
analysis.

Although any sensible value can be used as the expression cutoff, typically a CPM value of 1 is used in our
analyses as it separates expressed genes from unexpressed genes well for most datasets. Here, a CPM value of
1 means that a gene is expressed if it has at least 20 counts in the sample with the lowest sequencing depth
(JMS9-P8c, library size approx. 20 million) or at least 76 counts in the sample with the greatest sequencing
depth (JMS8-3, library size approx. 76 million). If sequence reads are summarised by exons rather than
genes and/or experiments have low sequencing depth, a lower CPM cutoff may be considered.
keep.exprs <- rowSums(cpm>1)>=3
x <- x[keep.exprs,, keep.lib.sizes=FALSE]
dim(x)
#> [1] 14165 9

Using this criterion, the number of genes is reduced to approximately half the number that we started with
(14,165 genes, panel B of the next figure). Note that subsetting the entire DGEList-object removes both the
counts as well as the associated gene information. Code to produce the figure is given below.
library(RColorBrewer)
nsamples <- ncol(x)
col <- brewer.pal(nsamples, "Paired")
par(mfrow=c(1,2))
plot(density(lcpm[,1]), col=col[1], lwd=2, ylim=c(0,0.21), las=2,

main="", xlab="")
title(main="A. Raw data", xlab="Log-cpm")
abline(v=0, lty=3)
for (i in 2:nsamples){
den <- density(lcpm[,i])
lines(den$x, den$y, col=col[i], lwd=2)

}
legend("topright", samplenames, text.col=col, bty="n")
lcpm <- cpm(x, log=TRUE)
plot(density(lcpm[,1]), col=col[1], lwd=2, ylim=c(0,0.21), las=2,

main="", xlab="")
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Figure 6.1: The density of log-CPM values for raw pre-filtered data (A) and post-filtered data (B) are shown
for each sample. Dotted vertical lines mark the log-CPM of zero threshold (equivalent to a CPM value of 1)
used in the filtering step.

title(main="B. Filtered data", xlab="Log-cpm")
abline(v=0, lty=3)
for (i in 2:nsamples){

den <- density(lcpm[,i])
lines(den$x, den$y, col=col[i], lwd=2)

}
legend("topright", samplenames, text.col=col, bty="n")

6.6.3 Normalising gene expression distributions

During the sample preparation or sequencing process, external factors that are not of biological interest can
affect the expression of individual samples. For example, samples processed in the first batch of an experiment
can have higher expression overall when compared to samples processed in a second batch. It is assumed that
all samples should have a similar range and distribution of expression values. Normalisation is required to
ensure that the expression distributions of each sample are similar across the entire experiment.

Any plot showing the per sample expression distributions, such as a density or boxplot, is useful in determining
whether any samples are dissimilar to others. Distributions of log-CPM values are similar throughout all
samples within this dataset (panel B of the figure above).

Nonetheless, normalisation by the method of trimmed mean of M-values (TMM) is performed using the
calcNormFactors function in edgeR. The normalisation factors calculated here are used as a scaling factor
for the library sizes. When working with DGEList-objects, these normalisation factors are automatically
stored in x$samples$norm.factors. For this dataset the effect of TMM-normalisation is mild, as evident in
the magnitude of the scaling factors, which are all relatively close to 1.
x <- calcNormFactors(x, method = "TMM")
x$samples$norm.factors
#> [1] 0.8957309 1.0349196 1.0439552 1.0405040 1.0323599 0.9223424 0.9836603
#> [8] 1.0827381 0.9792607
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Figure 6.2: Example data: Boxplots of log-CPM values showing expression distributions for unnormalised
data (A) and normalised data (B) for each sample in the modified dataset where the counts in samples 1 and
2 have been scaled to 5% and 500% of their original values respectively.

To give a better visual representation of the effects of normalisation, the data was duplicated then adjusted
so that the counts of the first sample are reduced to 5% of their original values, and in the second sample
they are inflated to be 5-times larger.
x2 <- x
x2$samples$norm.factors <- 1
x2$counts[,1] <- ceiling(x2$counts[,1]*0.05)
x2$counts[,2] <- x2$counts[,2]*5

The figure below shows the expression distribution of samples for unnormalised and normalised data, where
distributions are noticeably different pre-normalisation and are similar post-normalisation. Here the first
sample has a small TMM scaling factor of 0.05, whereas the second sample has a large scaling factor of 6.13 –
neither values are close to 1.
par(mfrow=c(1,2))
lcpm <- cpm(x2, log=TRUE)
boxplot(lcpm, las=2, col=col, main="")
title(main="A. Example: Unnormalised data",ylab="Log-cpm")
x2 <- calcNormFactors(x2)
x2$samples$norm.factors
#> [1] 0.05472223 6.13059440 1.22927355 1.17051887 1.21487709 1.05622968
#> [7] 1.14587663 1.26129350 1.11702264
lcpm <- cpm(x2, log=TRUE)
boxplot(lcpm, las=2, col=col, main="")
title(main="B. Example: Normalised data",ylab="Log-cpm")
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6.6.4 Unsupervised clustering of samples

In our opinion, one of the most important exploratory plots to examine for gene expression analyses is the
multi-dimensional scaling (MDS) plot, or similar. The plot shows similarities and dissimilarities between
samples in an unsupervised manner so that one can have an idea of the extent to which differential expression
can be detected before carrying out formal tests. Ideally, samples would cluster well within the primary
condition of interest, and any sample straying far from its group could be identified and followed up for
sources of error or extra variation. If present, technical replicates should lie very close to one another.

Such a plot can be made in limma using the plotMDS function. The first dimension represents the leading-
fold-change that best separates samples and explains the largest proportion of variation in the data, with
subsequent dimensions having a smaller effect and being orthogonal to the ones before it. When experimental
design involves multiple factors, it is recommended that each factor is examined over several dimensions.
If samples cluster by a given factor in any of these dimensions, it suggests that the factor contributes to
expression differences and is worth including in the linear modelling. On the other hand, factors that show
little or no effect may be left out of downstream analysis.

In this dataset, samples can be seen to cluster well within experimental groups over dimension 1 and 2, and
then separate by sequencing lane (sample batch) over dimension 3 (shown in the plot below). Keeping in
mind that the first dimension explains the largest proportion of variation in the data, notice that the range
of values over the dimensions become smaller as we move to higher dimensions.

Whilst all samples cluster by groups, the largest transcriptional difference is observed between basal and LP,
and basal and ML over dimension 1. For this reason, it is expected that pairwise comparisons between cell
populations will result in a greater number of DE genes for comparisons involving basal samples, and relatively
small numbers of DE genes when comparing ML to LP. In other datasets, samples that do not cluster by their
groups of interest may also show little or no evidence of differential expression in the downstream analysis.

To create the MDS plots, different colour groupings are assigned to factors of interest. Dimensions 1 and 2
are examined using the color grouping defined by cell types.

Dimensions 3 and 4 are examined using the colour grouping defined by sequencing lanes (batch).
lcpm <- cpm(x, log=TRUE)
par(mfrow=c(1,2))
col.group <- group
levels(col.group) <- brewer.pal(nlevels(col.group), "Set1")
col.group <- as.character(col.group)
col.lane <- lane
levels(col.lane) <- brewer.pal(nlevels(col.lane), "Set2")
col.lane <- as.character(col.lane)
plotMDS(lcpm, labels=group, col=col.group)
title(main="A. Sample groups")
plotMDS(lcpm, labels=lane, col=col.lane, dim=c(3,4))
title(main="B. Sequencing lanes")

Alternatively, the Glimma package offers the convenience of an interactive MDS plot where multiple
dimensions can be explored. The glMDSPlot function generates an html page (that is opened in a browser if
launch=TRUE) with an MDS plot in the left panel and a barplot showing the proportion of variation explained
by each dimension in the right panel. Clicking on the bars of the bar plot changes the pair of dimensions
plotted in the MDS plot, and hovering over the individual points reveals the sample label. The colour scheme
can be changed as well to highlight cell population or sequencing lane (batch). An interactive MDS plot of
this dataset can be found at http://bioinf.wehi.edu.au/folders/limmaWorkflow/glimma-plots/MDS-Plot.html.
glMDSPlot(lcpm, labels=paste(group, lane, sep="_"),

groups=x$samples[,c(2,5)], launch=FALSE)

http://bioinf.wehi.edu.au/folders/limmaWorkflow/glimma-plots/MDS-Plot.html
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Figure 6.3: MDS plots of log-CPM values over dimensions 1 and 2 with samples coloured and labeled by
sample groups (A) and over dimensions 3 and 4 with samples coloured and labeled by sequencing lane
(B). Distances on the plot correspond to the leading fold-change, which is the average (root-mean-square)
log2-fold-change for the 500 genes most divergent between each pair of samples by default.

6.7 Differential expression analysis

6.7.1 Creating a design matrix and contrasts

In this study, it is of interest to see which genes are expressed at different levels between the three cell
populations profiled. In our analysis, linear models are fitted to the data with the assumption that the
underlying data is normally distributed. To get started, a design matrix is set up with both the cell population
and sequencing lane (batch) information.
design <- model.matrix(~0+group+lane)
colnames(design) <- gsub("group", "", colnames(design))
design
#> Basal LP ML laneL006 laneL008
#> 1 0 1 0 0 0
#> 2 0 0 1 0 0
#> 3 1 0 0 0 0
#> 4 1 0 0 1 0
#> 5 0 0 1 1 0
#> 6 0 1 0 1 0
#> 7 1 0 0 1 0
#> 8 0 0 1 0 1
#> 9 0 1 0 0 1
#> attr(,"assign")
#> [1] 1 1 1 2 2
#> attr(,"contrasts")
#> attr(,"contrasts")$group
#> [1] "contr.treatment"
#>
#> attr(,"contrasts")$lane
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#> [1] "contr.treatment"

For a given experiment, there are usually several equivalent ways to set up an appropriate design matrix.
For example, ~0+group+lane removes the intercept from the first factor, group, but an intercept remains in
the second factor lane. Alternatively, ~group+lane could be used to keep the intercepts in both group and
lane. Understanding how to interpret the coefficients estimated in a given model is key here. We choose
the first model for our analysis, as setting up model contrasts is more straight forward in the absence of an
intercept for group. Contrasts for pairwise comparisons between cell populations are set up in limma using
the makeContrasts function.
contr.matrix <- makeContrasts(

BasalvsLP = Basal-LP,
BasalvsML = Basal - ML,
LPvsML = LP - ML,
levels = colnames(design))

contr.matrix
#> Contrasts
#> Levels BasalvsLP BasalvsML LPvsML
#> Basal 1 1 0
#> LP -1 0 1
#> ML 0 -1 -1
#> laneL006 0 0 0
#> laneL008 0 0 0

A key strength of limma’s linear modelling approach, is the ability accommodate arbitrary experimental
complexity. Simple designs, such as the one in this workflow, with cell type and batch, through to more
complicated factorial designs and models with interaction terms can be handled relatively easily. Where
experimental or technical effects can be modelled using a random effect, another possibility in limma is to
estimate correlations using duplicateCorrelation by specifying a block argument for both this function
and in the lmFit linear modelling step.

6.7.2 Removing heteroscedascity from count data

It has been shown that for RNA-seq count data, the variance is not independent of the mean – this is true of
raw counts or when transformed to log-CPM values. Methods that model counts using a Negative Binomial
distribution assume a quadratic mean-variance relationship. In limma, linear modelling is carried out on
the log-CPM values which are assumed to be normally distributed and the mean-variance relationship is
accommodated using precision weights calculated by the voom function.

When operating on a DGEList-object, voom converts raw counts to log-CPM values by automatically extracting
library sizes and normalisation factors from x itself. Additional normalisation to log-CPM values can be
specified within voom using the normalize.method argument.

The mean-variance relationship of log-CPM values for this dataset is shown in the left-hand panel of the
next figure. Typically, the voom-plot shows a decreasing trend between the means and variances resulting
from a combination of technical variation in the sequencing experiment and biological variation amongst the
replicate samples from different cell populations. Experiments with high biological variation usually result
in flatter trends, where variance values plateau at high expression values. Experiments with low biological
variation tend to result in sharp decreasing trends.

Moreover, the voom-plot provides a visual check on the level of filtering performed upstream. If filtering of
lowly-expressed genes is insufficient, a drop in variance levels can be observed at the low end of the expression
scale due to very small counts. If this is observed, one should return to the earlier filtering step and increase
the expression threshold applied to the dataset.
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Where sample-level variation is evident from earlier inspections of the MDS plot, the voomWithQualityWeights
function can be used to simultaneously incorporate sample-level weights together with the abundance
dependent weights estimated by voom. For an example of this, see Liu et al. (2016).
par(mfrow=c(1,2))
v <- voom(x, design, plot=TRUE)
v
#> An object of class "EList"
#> $genes
#> ENTREZID SYMBOL TXCHROM
#> 1 497097 Xkr4 chr1
#> 6 27395 Mrpl15 chr1
#> 7 18777 Lypla1 chr1
#> 9 21399 Tcea1 chr1
#> 10 58175 Rgs20 chr1
#> 14160 more rows ...
#>
#> $targets
#> files group
#> 23/GSM1545535_10_6_5_11 Law_RNAseq123/GSM1545535_10_6_5_11.txt LP
#> 23/GSM1545536_9_6_5_11 Law_RNAseq123/GSM1545536_9_6_5_11.txt ML
#> 23/GSM1545538_purep53 Law_RNAseq123/GSM1545538_purep53.txt Basal
#> 23/GSM1545539_JMS8-2 Law_RNAseq123/GSM1545539_JMS8-2.txt Basal
#> 23/GSM1545540_JMS8-3 Law_RNAseq123/GSM1545540_JMS8-3.txt ML
#> 23/GSM1545541_JMS8-4 Law_RNAseq123/GSM1545541_JMS8-4.txt LP
#> 23/GSM1545542_JMS8-5 Law_RNAseq123/GSM1545542_JMS8-5.txt Basal
#> 23/GSM1545544_JMS9-P7c Law_RNAseq123/GSM1545544_JMS9-P7c.txt ML
#> 23/GSM1545545_JMS9-P8c Law_RNAseq123/GSM1545545_JMS9-P8c.txt LP
#> lib.size norm.factors lane
#> 23/GSM1545535_10_6_5_11 29409426 0.8957309 L004
#> 23/GSM1545536_9_6_5_11 36528591 1.0349196 L004
#> 23/GSM1545538_purep53 59598629 1.0439552 L004
#> 23/GSM1545539_JMS8-2 53382070 1.0405040 L006
#> 23/GSM1545540_JMS8-3 78175314 1.0323599 L006
#> 23/GSM1545541_JMS8-4 55762781 0.9223424 L006
#> 23/GSM1545542_JMS8-5 54115150 0.9836603 L006
#> 23/GSM1545544_JMS9-P7c 23043111 1.0827381 L008
#> 23/GSM1545545_JMS9-P8c 19525423 0.9792607 L008
#>
#> $E
#> Samples
#> Tags 23/GSM1545535_10_6_5_11 23/GSM1545536_9_6_5_11
#> 497097 -4.293244 -3.869026
#> 27395 3.875010 4.400568
#> 18777 4.707695 5.559334
#> 21399 4.784462 4.741999
#> 58175 3.943567 3.294875
#> Samples
#> Tags 23/GSM1545538_purep53 23/GSM1545539_JMS8-2 23/GSM1545540_JMS8-3
#> 497097 2.522753 3.302006 -4.481286
#> 27395 4.521172 4.570624 4.322845
#> 18777 5.400569 5.171235 5.627798
#> 21399 5.374548 5.130925 4.848030
#> 58175 -1.767924 -1.880302 2.993289
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#> Samples
#> Tags 23/GSM1545541_JMS8-4 23/GSM1545542_JMS8-5 23/GSM1545544_JMS9-P7c
#> 497097 -3.993876 3.306782 -3.204336
#> 27395 3.786547 3.918878 4.345642
#> 18777 5.081794 5.080061 5.757404
#> 21399 4.944024 5.158292 5.036933
#> 58175 3.357379 -2.114104 3.142621
#> Samples
#> Tags 23/GSM1545545_JMS9-P8c
#> 497097 -5.287282
#> 27395 4.132678
#> 18777 5.150470
#> 21399 4.987679
#> 58175 3.523290
#> 14160 more rows ...
#>
#> $weights
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] 1.183974 1.183974 20.526779 20.97747 1.773562 1.217142 21.125740
#> [2,] 20.879554 26.561871 31.596323 29.66102 32.558344 26.745293 29.792090
#> [3,] 28.003202 33.695540 34.845507 34.45673 35.148529 33.550527 34.517259
#> [4,] 27.670233 29.595778 34.901302 34.43298 34.841349 33.159425 34.493456
#> [5,] 19.737381 18.658333 3.184207 2.62986 24.191635 24.014937 2.648747
#> [,8] [,9]
#> [1,] 1.183974 1.183974
#> [2,] 21.900102 17.150677
#> [3,] 31.440457 25.228325
#> [4,] 26.136796 24.502247
#> [5,] 13.149278 14.351930
#> 14160 more rows ...
#>
#> $design
#> Basal LP ML laneL006 laneL008
#> 1 0 1 0 0 0
#> 2 0 0 1 0 0
#> 3 1 0 0 0 0
#> 4 1 0 0 1 0
#> 5 0 0 1 1 0
#> 6 0 1 0 1 0
#> 7 1 0 0 1 0
#> 8 0 0 1 0 1
#> 9 0 1 0 0 1
#> attr(,"assign")
#> [1] 1 1 1 2 2
#> attr(,"contrasts")
#> attr(,"contrasts")$group
#> [1] "contr.treatment"
#>
#> attr(,"contrasts")$lane
#> [1] "contr.treatment"
vfit <- lmFit(v, design)
vfit <- contrasts.fit(vfit, contrasts=contr.matrix)
efit <- eBayes(vfit)
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plotSA(efit, main="Final model: Mean-variance trend")

5 10 15

0.
5

1.
0

1.
5

log2( count size + 0.5 )

S
qr

t(
 s

ta
nd

ar
d 

de
vi

at
io

n 
)

voom: Mean−variance trend

0 5 10

0.
5

1.
0

1.
5

2.
0

2.
5

Final model: Mean−variance trend

Average log−expression

sq
rt

(s
ig

m
a)

Note that the other data frames stored within the DGEList-object that contain gene- and sample-level
information, are retained in the EList-object v created by voom. The v$genes data frame is equivalent to
x$genes, v$targets is equivalent to x$samples, and the expression values stored in v$E is analogous to
x$counts, albeit on a transformed scale. In addition to this, the voom EList-object has a matrix of precision
weights v$weights and stores the design matrix in v$design.

6.7.3 Fitting linear models for comparisons of interest

Linear modelling in limma is carried out using the lmFit and contrasts.fit functions originally written
for application to microarrays. The functions can be used for both microarray and RNA-seq data and fit a
separate model to the expression values for each gene. Next, empirical Bayes moderation is carried out by
borrowing information across all the genes to obtain more precise estimates of gene-wise variability. The
model’s residual variances are plotted against average expression values in the next figure. It can be seen
from this plot that the variance is no longer dependent on the mean expression level.

6.7.4 Examining the number of DE genes

For a quick look at differential expression levels, the number of significantly up- and down-regulated genes can
be summarised in a table. Significance is defined using an adjusted p-value cutoff that is set at 5% by default.
For the comparison between expression levels in basal and LP, 4,127 genes are found to be down-regulated in
basal relative to LP and 4,298 genes are up-regulated in basal relative to LP – a total of 8,425 DE genes.
A total of 8,510 DE genes are found between basal and ML (4,338 down- and 4,172 up-regulated genes),
and a total of 5,340 DE genes are found between LP and ML (2,895 down- and 2,445 up-regulated). The
larger numbers of DE genes observed for comparisons involving the basal population are consistent with our
observations from the MDS plots.
summary(decideTests(efit))
#> BasalvsLP BasalvsML LPvsML
#> Down 4127 4338 2895
#> NotSig 5740 5655 8825
#> Up 4298 4172 2445
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Some studies require more than an adjusted p-value cut-off. For a stricter definition on significance, one may
require log-fold-changes (log-FCs) to be above a minimum value. The treat method can be used to calculate
p-values from empirical Bayes moderated t-statistics with a minimum log-FC requirement. The number of
differentially expressed genes are reduced to a total of 3,135 DE genes for basal versus LP, 3,270 DE genes
for basal versus ML, and 385 DE genes for LP versus ML when testing requires genes to have a log-FC that
is significantly greater than 1 (equivalent to a 2-fold difference between cell types on the original scale).
tfit <- treat(vfit, lfc=1)
dt <- decideTests(tfit)
summary(dt)
#> BasalvsLP BasalvsML LPvsML
#> Down 1417 1512 203
#> NotSig 11030 10895 13780
#> Up 1718 1758 182

Genes that are DE in multiple comparisons can be extracted using the results from decideTests, where 0s
represent genes that are not DE, 1s represent genes that are up-regulated, and -1s represent genes that are
down-regulated. A total of 2,409 genes are DE in both basal versus LP and basal versus ML, twenty of which
are listed below. The write.fit function can be used to extract and write results for all three comparisons
to a single output file.
de.common <- which(dt[,1]!=0 & dt[,2]!=0)
length(de.common)
#> [1] 2409
head(tfit$genes$SYMBOL[de.common], n=20)
#> [1] "Xkr4" "Rgs20" "Cpa6" "Sulf1"
#> [5] "Eya1" "Msc" "Sbspon" "Pi15"
#> [9] "Crispld1" "Kcnq5" "Ptpn18" "Arhgef4"
#> [13] "2010300C02Rik" "Aff3" "Npas2" "Tbc1d8"
#> [17] "Creg2" "Il1r1" "Il18r1" "Il18rap"
vennDiagram(dt[,1:2], circle.col=c("turquoise", "salmon"))

write.fit(tfit, dt, file="results.txt")

6.7.5 Examining individual DE genes from top to bottom

The top DE genes can be listed using topTreat for results using treat (or topTable for results using
eBayes). By default topTreat arranges genes from smallest to largest adjusted p-value with associated gene
information, log-FC, average log-CPM, moderated t-statistic, raw and adjusted p-value for each gene. The
number of top genes displayed can be specified, where n=Inf includes all genes. Genes Cldn7 and Rasef are
amongst the top DE genes for both basal versus LP and basal versus ML.
basal.vs.lp <- topTreat(tfit, coef=1, n=Inf)
basal.vs.ml <- topTreat(tfit, coef=2, n=Inf)
head(basal.vs.lp)
#> ENTREZID SYMBOL TXCHROM logFC AveExpr t P.Value
#> 12759 12759 Clu chr14 -5.442877 8.857907 -33.44429 3.990899e-10
#> 53624 53624 Cldn7 chr11 -5.514605 6.296762 -32.94533 4.503694e-10
#> 242505 242505 Rasef chr4 -5.921741 5.119585 -31.77625 6.063249e-10
#> 67451 67451 Pkp2 chr16 -5.724823 4.420495 -30.65370 8.010456e-10
#> 228543 228543 Rhov chr2 -6.253427 5.486640 -29.46244 1.112729e-09
#> 70350 70350 Basp1 chr15 -6.073297 5.248349 -28.64890 1.380545e-09
#> adj.P.Val
#> 12759 2.703871e-06
#> 53624 2.703871e-06
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Figure 6.4: Venn diagram showing the number of genes DE in the comparison between basal versus LP only
(left), basal versus ML only (right), and the number of genes that are DE in both comparisons (center). The
number of genes that are not DE in either comparison are marked in the bottom-right.

#> 242505 2.703871e-06
#> 67451 2.703871e-06
#> 228543 2.703871e-06
#> 70350 2.703871e-06
head(basal.vs.ml)
#> ENTREZID SYMBOL TXCHROM logFC AveExpr t P.Value
#> 242505 242505 Rasef chr4 -6.510470 5.119585 -35.49093 2.573575e-10
#> 53624 53624 Cldn7 chr11 -5.469160 6.296762 -32.52520 4.978446e-10
#> 12521 12521 Cd82 chr2 -4.667737 7.070963 -31.82187 5.796191e-10
#> 71740 71740 Nectin4 chr1 -5.556046 5.166292 -31.29987 6.760578e-10
#> 20661 20661 Sort1 chr3 -4.908119 6.705784 -31.23083 6.761331e-10
#> 15375 15375 Foxa1 chr12 -5.753884 5.625064 -28.34612 1.487280e-09
#> adj.P.Val
#> 242505 1.915485e-06
#> 53624 1.915485e-06
#> 12521 1.915485e-06
#> 71740 1.915485e-06
#> 20661 1.915485e-06
#> 15375 2.281914e-06

6.7.6 Useful graphical representations of differential expression results

To summarise results for all genes visually, mean-difference plots, which display log-FCs from the linear model
fit against the average log-CPM values can be generated using the plotMD function, with the differentially
expressed genes highlighted.
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plotMD(tfit, column=1, status=dt[,1], main=colnames(tfit)[1],
xlim=c(-8,13))

Glimma extends this functionality by providing an interactive mean-difference plot via the glMDPlot function.
The output of this function is an html page, with summarised results in the left panel (similar to what is
output by plotMD), and the log-CPM values from individual samples in the right panel, with a table of results
below the plots. This interactive display allows the user to search for particular genes based on their Gene
symbol, which is not possible in a static R plot. The glMDPlot function is not limited to mean-difference
plots, with a default version allowing a data frame to be passed with the user able to select the columns of
interest to plot in the left panel.
glMDPlot(tfit, coef=1, status=dt, main=colnames(tfit)[1],

side.main="ENTREZID", counts=x$counts, groups=group, launch=FALSE)

The mean-difference plot generated by the command above is available online (see http://bioinf.wehi.edu.au/
folders/limmaWorkflow/glimma-plots/MD-Plot.html). The interactivity provided by the Glimma package
allows additional information to be presented in a single graphical window. Glimma is implemented in R
and Javascript, with the R code generating the data which is converted into graphics using the Javascript
library D3 (https://d3js.org), with the Bootstrap library handling layouts and Datatables generating the
interactive searchable tables. This allows plots to be viewed in any modern browser, which is convenient for
including them as linked files from an Rmarkdown report of the analysis.

Plots shown previously include either all of the genes that are expressed in any one condition (such as the
Venn diagram of common DE genes or mean-difference plot) or look at genes individually (log-CPM values
shown in right panel of the interactive mean-difference plot). Heatmaps allow users to look at the expression
of a subset of genes. This can be give useful insight into the expression of individual groups and samples
without losing perspective of the overall study when focusing on individual genes, or losing resolution when
examining patterns averaged over thousands of genes at the same time.

A heatmap is created for the top 100 DE genes (as ranked by adjusted p-value) from the basal versus LP
contrast using the heatmap.2 function from the gplots package. The heatmap correctly clusters samples
into cell type and rearranges the order of genes to form blocks of similar expression. From the heatmap, we
observe that the expression of ML and LP samples are very similar for the top 100 DE genes between basal
and LP.
library(gplots)
basal.vs.lp.topgenes <- basal.vs.lp$ENTREZID[1:100]
i <- which(v$genes$ENTREZID %in% basal.vs.lp.topgenes)
mycol <- colorpanel(1000,"blue","white","red")
heatmap.2(v$E[i,], scale="row",

labRow=v$genes$SYMBOL[i], labCol=group,
col=mycol, trace="none", density.info="none",
margin=c(8,6), lhei=c(2,10), dendrogram="column")

http://bioinf.wehi.edu.au/folders/limmaWorkflow/glimma-plots/MD-Plot.html
http://bioinf.wehi.edu.au/folders/limmaWorkflow/glimma-plots/MD-Plot.html
https://d3js.org
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Figure 6.5: Heatmap of log-CPM values for top 100 genes DE in basal versus LP. Expression across each
gene (or row) have been scaled so that mean expression is zero and standard deviation is one. Samples with
relatively high expression of a given gene are marked in red and samples with relatively low expression are
marked in blue. Lighter shades and white represent genes with intermediate expression levels. Samples and
genes have been reordered by the method of hierarchical clustering. A dendrogram is shown for the sample
clustering.



Chapter 7
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7.1 Overview

7.1.1 Description

In this workshop, we will give a quick overview of the most useful functions in the DESeq2 package, and
a basic RNA-seq analysis. We will cover: how to quantify transcript expression from FASTQ files using
Salmon, import quantification from Salmon with tximport and tximeta, generate plots for quality control and
exploratory data analysis EDA (also using MultiQC), perform differential expression (DE) (also using apeglm),
overlap with other experimental data (using AnnotationHub), and build reports (using ReportingTools and
Glimma). We will give a short example of integration of DESeq2 with the zinbwave package for single-cell
RNA-seq differential expression. The workshop is designed to be a lab with plenty of time for questions
throughout the lab.

7.1.2 Pre-requisites

• Basic knowledge of R syntax

Non-essential background reading:

• DESeq2 paper: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/
• tximport paper: https://f1000research.com/articles/4-1521/v2
• apeglm paper: https://www.biorxiv.org/content/early/2018/04/17/303255

7.1.3 Participation

Students will participate by following along an Rmarkdown document, and asking questions throughout the
workshop.

1UNC-Chapel Hill, NC, US
2ZMBH Heidelberg, Germany
3EMBL Heidelberg, Germany
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049/
https://f1000research.com/articles/4-1521/v2
https://www.biorxiv.org/content/early/2018/04/17/303255
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7.1.4 R / Bioconductor packages used

• DESeq2
• tximport
• apeglm
• AnnotationHub
• ReportingTools
• Glimma
• splatter
• zinbwave

7.1.5 Time outline

Activity Time
Overview of packages 20m
Quantification and import 20m
EDA and DE 20m
Downstream analysis & reports 20m
ZINB-WaVE integration 20m
Additional questions 20m

7.1.6 Workshop goals and objectives

Learning goals

• Visually assess quality of RNA-seq data
• Perform basic differential analysis of RNA-seq data
• Compare RNA-seq results with other experimental data

Learning objectives

• Quantify transcript expression from FASTQ files
• Import quantification into R/Bioconductor
• Perform quality control and exploratory data analysis
• Perform differential expression
• Overlap with other experimental data
• Build dynamic reports
• Integrate DESeq2 and zinbwave for single-cell RNA-seq data

7.2 Preparing data for DESeq2

7.2.1 Experimental data

The data used in this workflow is stored in the airway package that summarizes an RNA-seq experiment
wherein airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with
anti-inflammatory effects (Himes et al. 2014). Glucocorticoids are used, for example, by people with asthma
to reduce inflammation of the airways. In the experiment, four primary human airway smooth muscle cell
lines were treated with 1 micromolar dexamethasone for 18 hours. For each of the four cell lines, we have a
treated and an untreated sample. For more description of the experiment see the PubMed entry 24926665
and for raw data see the GEO entry GSE52778.

http://www.ncbi.nlm.nih.gov/pubmed/24926665
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778
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We will show how to import RNA-seq quantification data using an alternative dataset (the tximportData
package which is used in the tximport vignette). Afterward we will load counts for the airway dataset,
which were counted using summarizeOverlaps from the GenomicAlignments package. As described below,
we recommend the tximport pipeline for producing count matrices, but we do not yet have a Bioconductor
package containing the necessary quantification files for the airway dataset.

7.2.2 Modeling count data

As input, the count-based statistical methods, such as DESeq2 (Love, Huber, and Anders 2014), edgeR
(Robinson, McCarthy, and Smyth 2009), limma with the voom method (Law et al. 2014), DSS (Wu, Wang,
and Wu 2013), EBSeq (Leng et al. 2013) and baySeq (Hardcastle and Kelly 2010), expect input data as
obtained, e.g., from RNA-seq or another high-throughput sequencing experiment, in the form of a matrix of
counts. The value in the i-th row and the j-th column of the matrix tells how many reads (or fragments,
for paired-end RNA-seq) have been assigned to gene i in sample j. Analogously, for other types of assays,
the rows of the matrix might correspond e.g., to binding regions (with ChIP-Seq), species of bacteria (with
metagenomic datasets), or peptide sequences (with quantitative mass spectrometry).

The values in the matrix should be counts of sequencing reads/fragments. This is important for the statistical
models used by DESeq2 and edgeR to hold, as only counts allow assessing the measurement precision correctly.
It is important to not provide counts that were pre-normalized for sequencing depth (also called library size),
as the statistical model is most powerful when applied to un-normalized counts and is designed to account for
library size differences internally.

7.2.3 Transcript abundances

In this workflow, we will show how to use transcript abundances as quantified by the Salmon (Patro et
al. 2017) software package. Salmon and other methods, such as Sailfish (Patro, Mount, and Kingsford
2014), kallisto (Bray et al. 2016), or RSEM (Bo Li and Dewey 2011), estimate the relative abundances
of all (known, annotated) transcripts without aligning reads. Because estimating the abundance of the
transcripts involves an inference step, the counts are estimated. Most methods either use a statistical
framework called Estimation-Maximization or Bayesian techniques to estimate the abundances and counts.
Following quantification, we will use the tximport (Soneson, Love, and Robinson 2015) package for assembling
estimated count and offset matrices for use with Bioconductor differential gene expression packages.

The advantages of using the transcript abundance quantifiers in conjunction with tximport to produce
gene-level count matrices and normalizing offsets, are:

1. this approach corrects for any potential changes in gene length across samples (e.g. from differential
isoform usage) (Trapnell et al. 2013)

2. some of these methods are substantially faster and require less memory and less disk usage compared
to alignment-based methods

3. it is possible to avoid discarding those fragments that can align to multiple genes with homologous
sequence (Robert and Watson 2015).

Note that transcript abundance quantifiers skip the generation of large files which store read alignments
(SAM or BAM files), instead producing smaller files which store estimated abundances, counts and effective
lengths per transcript. For more details, see the manuscript describing this approach (Soneson, Love, and
Robinson 2015) and the tximport package vignette for software details.

A full tutorial on how to use the Salmon software for quantifying transcript abundance can be found here.

https://combine-lab.github.io/salmon/
http://www.cs.cmu.edu/~ckingsf/software/sailfish/
https://pachterlab.github.io/kallisto/
http://deweylab.github.io/RSEM/
https://combine-lab.github.io/salmon/getting_started/
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7.2.4 Salmon quantification

We begin by providing Salmon with the sequence of all of the reference transcripts, which we will call the
reference transcriptome. We recommend to use the GENCODE human transcripts, which can be downloaded
from the GENCODE website. On the command line, creating the transcriptome index looks like:

salmon index -i gencode.v99_salmon_0.10.0 -t gencode.v99.transcripts.fa.gz

The 0.10.0 refers to the version of Salmon that was used, and is useful to put into the index name.

To quantify an individual sample, sample_01, the following command can be used:

salmon quant -i gencode.v99_salmon_0.10.0 -p 6 --libType A \
--gcBias --biasSpeedSamp 5 \
-1 sample_01_1.fastq.gz -2 sample_01_2.fastq.gz \
-o sample_01

In simple English, this command says to “quantify a sample using this transcriptome index, with 6 threads,
using automatic library type detection, using GC bias correction (the bias speed part is now longer needed
with current versions of Salmon), here are the first and second read, and use this output directory.” The
output directory will be created if it doesn’t exist, though if earlier parts of the path do not exist, it will give
an error. A single sample of human RNA-seq usually takes ~5 minutes with the GC bias correction.

Rather than writing the above command on the command line multiple times for each sample, it is possible
to loop over files using a bash loop, or more advanced workflow management systems such as Snakemake
(Köster and Rahmann 2012) or Nextflow (Di Tommaso et al. 2017).

7.3 Importing into R with tximport

7.3.1 Specifying file locations

Following quantification, we can use tximport to import the data into R and perform statistical analysis using
Bioconductor packages. Normally, we would simply point tximport to the quant.sf files on our machine.
However, because we are distributing these files as part of an R package, we have to do some extra steps, to
figure out where the R package, and so the files, are located on your machine.

We will show how to import Salmon quantification files using the data in the tximportData package. The
quantified samples are six samples from the GEUVADIS Project (Lappalainen et al. 2013). The output
directories from the above Salmon quantification calls has been stored in the extdata directory of the
tximportData package. The R function system.file can be used to find out where on your computer the files
from a package have been installed. Here we ask for the full path to the extdata directory, where R packages
store external data, that is part of the tximportData package.
library("tximportData")
dir <- system.file("extdata", package="tximportData")
list.files(dir)
#> [1] "cufflinks" "kallisto"
#> [3] "kallisto_boot" "rsem"
#> [5] "sailfish" "salmon"
#> [7] "salmon_dm" "salmon_gibbs"
#> [9] "samples_extended.txt" "samples.txt"
#> [11] "tx2gene.csv" "tx2gene.gencode.v27.csv"

The Salmon quantification directories are in the salmon directory.
list.files(file.path(dir,"salmon"))
#> [1] "ERR188021" "ERR188088" "ERR188288" "ERR188297" "ERR188329" "ERR188356"

https://www.gencodegenes.org/
http://salmon.readthedocs.io/en/latest/library_type.html
http://www.geuvadis.org/web/geuvadis
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The identifiers used here are the ERR identifiers from the European Nucleotide Archive. We need to create a
named vector pointing to the quantification files. We will create a vector of filenames first by reading in a
table that contains the sample IDs, and then combining this with dir and "quant.sf.gz". (We gzipped the
quantification files to make the data package smaller, this is not a problem for R functions that we use to
import the files.)
samples <- read.table(file.path(dir,"samples.txt"), header=TRUE)
samples
#> pop center assay sample experiment run
#> 1 TSI UNIGE NA20503.1.M_111124_5 ERS185497 ERX163094 ERR188297
#> 2 TSI UNIGE NA20504.1.M_111124_7 ERS185242 ERX162972 ERR188088
#> 3 TSI UNIGE NA20505.1.M_111124_6 ERS185048 ERX163009 ERR188329
#> 4 TSI UNIGE NA20507.1.M_111124_7 ERS185412 ERX163158 ERR188288
#> 5 TSI UNIGE NA20508.1.M_111124_2 ERS185362 ERX163159 ERR188021
#> 6 TSI UNIGE NA20514.1.M_111124_4 ERS185217 ERX163062 ERR188356
files <- file.path(dir, "salmon", samples$run, "quant.sf.gz")
names(files) <- paste0("sample",1:6)
all(file.exists(files))
#> [1] TRUE

7.3.2 Mapping transcripts to genes

Transcripts need to be associated with gene IDs for gene-level summarization. We therefore will construct
a data.frame called tx2gene with two columns: 1) transcript ID and 2) gene ID. The column names do
not matter but this column order must be used. The transcript ID must be the same one used in the
abundance files. This can most easily be accomplished by downloading the GTF file at the same time that
the transcriptome FASTA is downloaded, and generating tx2gene from the GTF file using Bioconductor’s
TxDb infrastructure.

Generating a TxDb from a GTF file can be easily accomplished with the makeTxDbFromGFF function. This
step requires a few minutes of waiting, and a large file. We therefore skip this step, but show the code that is
used to create the tx2gene table, assuming the correct TxDb object has been created.

Creating the tx2gene data.frame can be accomplished by calling the select function from the AnnotationDbi
package on a TxDb object. The following code could be used to construct such a table:
library("TxDb.Hsapiens.UCSC.hg38.knownGene")
#> Loading required package: GenomicFeatures
#> Loading required package: BiocGenerics
#> Loading required package: parallel
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:parallel':
#>
#> clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
#> clusterExport, clusterMap, parApply, parCapply, parLapply,
#> parLapplyLB, parRapply, parSapply, parSapplyLB
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> anyDuplicated, append, as.data.frame, basename, cbind,
#> colMeans, colnames, colSums, dirname, do.call, duplicated,
#> eval, evalq, Filter, Find, get, grep, grepl, intersect,

https://www.ebi.ac.uk/ena
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#> is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
#> paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
#> Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,
#> table, tapply, union, unique, unsplit, which, which.max,
#> which.min
#> Loading required package: S4Vectors
#> Loading required package: stats4
#>
#> Attaching package: 'S4Vectors'
#> The following object is masked from 'package:base':
#>
#> expand.grid
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: GenomicRanges
#> Loading required package: AnnotationDbi
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
k <- keys(txdb, keytype="TXNAME")
tx2gene <- select(txdb, k, "GENEID", "TXNAME")
#> 'select()' returned 1:1 mapping between keys and columns

In this case, we’ve used the Gencode v27 CHR transcripts to build our Salmon index, and we used
makeTxDbFromGFF and code similar to the chunk above to build the tx2gene table. We then read in a
pre-constructed tx2gene table:
library("readr")
tx2gene <- read_csv(file.path(dir, "tx2gene.gencode.v27.csv"))
#> Parsed with column specification:
#> cols(
#> TXNAME = col_character(),
#> GENEID = col_character()
#> )
head(tx2gene)
#> # A tibble: 6 x 2
#> TXNAME GENEID
#> <chr> <chr>
#> 1 ENST00000456328.2 ENSG00000223972.5
#> 2 ENST00000450305.2 ENSG00000223972.5
#> 3 ENST00000473358.1 ENSG00000243485.5
#> 4 ENST00000469289.1 ENSG00000243485.5
#> 5 ENST00000607096.1 ENSG00000284332.1
#> 6 ENST00000606857.1 ENSG00000268020.3

7.3.3 tximport command

Finally the following line of code imports Salmon transcript quantifications into R, collapsing to the gene
level using the information in tx2gene.
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library("tximport")
library("jsonlite")
library("readr")
txi <- tximport(files, type="salmon", tx2gene=tx2gene)
#> reading in files with read_tsv
#> 1 2 3 4 5 6
#> summarizing abundance
#> summarizing counts
#> summarizing length

The txi object is simply a list of matrices (and one character vector):
names(txi)
#> [1] "abundance" "counts" "length"
#> [4] "countsFromAbundance"
txi$counts[1:3,1:3]
#> sample1 sample2 sample3
#> ENSG00000000003.14 2.58012 2.000 27.09648
#> ENSG00000000005.5 0.00000 0.000 0.00000
#> ENSG00000000419.12 1056.99960 1337.997 1452.99497
txi$length[1:3,1:3]
#> sample1 sample2 sample3
#> ENSG00000000003.14 3621.7000 735.4220 2201.6223
#> ENSG00000000005.5 195.6667 195.6667 195.6667
#> ENSG00000000419.12 871.5077 905.0540 845.7278
txi$abundance[1:3,1:3]
#> sample1 sample2 sample3
#> ENSG00000000003.14 0.0354884 0.119404 0.411491
#> ENSG00000000005.5 0.0000000 0.000000 0.000000
#> ENSG00000000419.12 60.4173800 64.909276 57.441353
txi$countsFromAbundance
#> [1] "no"

If we were continuing with the GEUVADIS samples, we would then create a DESeqDataSet with the following
line of code. Because there are no differences among the samples (same population and same sequencing
batch), we specify a design formula of ~1, meaning we can only fit an intercept term – so we cannot perform
differential expression analysis with these samples.
library("DESeq2")
#> Loading required package: SummarizedExperiment
#> Loading required package: DelayedArray
#> Loading required package: matrixStats
#>
#> Attaching package: 'matrixStats'
#> The following objects are masked from 'package:Biobase':
#>
#> anyMissing, rowMedians
#> Loading required package: BiocParallel
#>
#> Attaching package: 'DelayedArray'
#> The following objects are masked from 'package:matrixStats':
#>
#> colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
#> The following objects are masked from 'package:base':
#>
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#> aperm, apply
dds <- DESeqDataSetFromTximport(txi, samples, ~1)
#> using counts and average transcript lengths from tximport
dds$center
#> [1] UNIGE UNIGE UNIGE UNIGE UNIGE UNIGE
#> Levels: UNIGE
dds$pop
#> [1] TSI TSI TSI TSI TSI TSI
#> Levels: TSI

7.4 Exploratory data analysis

7.4.1 Simple EDA

We will now switch over to the airway experiment, counts of which are already prepared in a Summarized-
Experiment object. In this case, the object that we load is the output of the summarizeOverlaps function
in the GenomicAlignments package, and the exact code used to produce this object can be seen by typing
vignette("airway") into the R session, to pull up the airway software vignette. There are multiple ways to
produce a count table and import it into DESeq2, and these are summarized in this section of the RNA-seq
gene-level workflow.
library("airway")
data("airway")

We want to specify that untrt is the reference level for the dex variable:
airway$dex <- relevel(airway$dex, "untrt")
airway$dex
#> [1] untrt trt untrt trt untrt trt untrt trt
#> Levels: untrt trt

We can quickly check the millions of fragments that uniquely aligned to the genes (the second argument of
round tells how many decimal points to keep).
round( colSums(assay(airway)) / 1e6, 1 )
#> SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
#> 20.6 18.8 25.3 15.2 24.4 30.8
#> SRR1039520 SRR1039521
#> 19.1 21.2

We can inspect the information about the samples, by pulling out the colData slot of the SummarizedExperi-
ment:
colData(airway)
#> DataFrame with 8 rows and 9 columns
#> SampleName cell dex albut Run avgLength
#> <factor> <factor> <factor> <factor> <factor> <integer>
#> SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126
#> SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126
#> SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126
#> SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87
#> SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120
#> SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126
#> SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101
#> SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98

https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html#deseq2-import-functions
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html#deseq2-import-functions
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#> Experiment Sample BioSample
#> <factor> <factor> <factor>
#> SRR1039508 SRX384345 SRS508568 SAMN02422669
#> SRR1039509 SRX384346 SRS508567 SAMN02422675
#> SRR1039512 SRX384349 SRS508571 SAMN02422678
#> SRR1039513 SRX384350 SRS508572 SAMN02422670
#> SRR1039516 SRX384353 SRS508575 SAMN02422682
#> SRR1039517 SRX384354 SRS508576 SAMN02422673
#> SRR1039520 SRX384357 SRS508579 SAMN02422683
#> SRR1039521 SRX384358 SRS508580 SAMN02422677
table(airway$cell)
#>
#> N052611 N061011 N080611 N61311
#> 2 2 2 2
table(airway$dex)
#>
#> untrt trt
#> 4 4

If we had not already loaded DESeq2, we would do this, and then create a DESeqDataSet. We want to control
for the cell line, while testing for differences across dexamethasone treatment, so we use a design of ~ cell
+ dex:
library("DESeq2")
dds <- DESeqDataSet(airway, design = ~ cell + dex)

We will perform a minimal filtering to reduce the size of the dataset. We do not need to retain genes if they
do not have a count of 5 or more for 4 or more samples as these genes will have no statistical power to detect
differences, and no information to compute distances between samples.
keep <- rowSums(counts(dds) >= 5) >= 4
table(keep)
#> keep
#> FALSE TRUE
#> 46070 18032
dds <- dds[keep,]

Some very basic exploratory analysis is to examine a boxplot of the counts for each sample. We will take the
logarithm so that large counts do not dominate the boxplot:
boxplot(log10(counts(dds)+1))
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The main function in DESeq2 involves computation of size factors which normalize for differences in sequencing
depth among samples. We can also compute these size factors manually, so that the normalized counts are
available for plotting:
dds <- estimateSizeFactors(dds)
boxplot(log10(counts(dds,normalized=TRUE)+1))
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7.4.2 Data transformation for EDA

Taking the logarithm of counts plus a pseudocount of 1 is a common transformation, but it tends to inflate the
sampling variance of low counts such that it is even larger than biological variation across groups of samples.
In DESeq2 we therefore provide transformations which produce log-scale data such that the systematic trends
have been removed. Our recommended transformation is the variance-stabilizing transformation, or VST,
and it can be called with the vst function:
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vsd <- vst(dds)
class(vsd)
#> [1] "DESeqTransform"
#> attr(,"package")
#> [1] "DESeq2"

This function does not return a DESeqDataSet, because it does not return counts, but instead continuous
values (on the log2 scale). We can access the transformed data with assay:
assay(vsd)[1:3,1:3]
#> SRR1039508 SRR1039509 SRR1039512
#> ENSG00000000003 9.456925 9.074623 9.608160
#> ENSG00000000419 8.952752 9.262092 9.145782
#> ENSG00000000457 8.193711 8.098664 8.032656

7.4.3 Principal components plot

The VST data is appropriate for calculating distances between samples or for performing PCA. More
information about PCA and distance calculation can be found in the RNA-seq gene-level workflow. In short,
PCA plots allow us to visualize the most dominant axes of variation in our data, which is useful for both
quality control, and to get a sense of how large the inter-sample differences are across and within conditions.
Here we see that PC1 (the primary axis of variation in the data) separates the treated and untreated samples:
plotPCA(vsd, "dex")
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With some additional ggplot2 code, we can also indicate which samples belong to which cell line:

https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html#deseq2-import-functions
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library("ggplot2")
pcaData <- plotPCA(vsd, intgroup = c( "dex", "cell"), returnData = TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(x = PC1, y = PC2, color = dex, shape = cell)) +

geom_point(size =3) +
xlab(paste0("PC1: ", percentVar[1], "% variance")) +
ylab(paste0("PC2: ", percentVar[2], "% variance")) +
coord_fixed()
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Note that we do not recommend working with the transformed data for the primary differential expression
analysis. Instead we will use the original counts and a generalized linear model (GLM) which takes into
account the expected variance from either low or high counts. For statistical details, please refer to the
DESeq2 methods paper (Love, Huber, and Anders 2014).

7.5 Differential expression analysis

7.5.1 Standard DE steps

Differential expression analysis in DESeq2 is performed by calling the following two functions:
dds <- DESeq(dds)
#> using pre-existing size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
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#> final dispersion estimates
#> fitting model and testing
res <- results(dds)

The results table res contains the results for each gene (in the same order as in the DESeqDataSet). If we
want to see the top genes, we can order it like so:
head(res[order(res$pvalue),])
#> log2 fold change (MLE): dex trt vs untrt
#> Wald test p-value: dex trt vs untrt
#> DataFrame with 6 rows and 6 columns
#> baseMean log2FoldChange lfcSE
#> <numeric> <numeric> <numeric>
#> ENSG00000152583 997.522193389904 4.57431721934494 0.183934560931089
#> ENSG00000165995 495.289924523775 3.29060376160862 0.132397954572965
#> ENSG00000120129 3409.85238036378 2.94725094348016 0.122471899817052
#> ENSG00000101347 12707.320121355 3.7664043884955 0.156934450326662
#> ENSG00000189221 2342.17328482568 3.35311264853444 0.142537730315705
#> ENSG00000211445 12292.1234547129 3.72983474166181 0.167361554620974
#> stat pvalue
#> <numeric> <numeric>
#> ENSG00000152583 24.8692643524384 1.60060793892601e-136
#> ENSG00000165995 24.853886695018 2.34741061794036e-136
#> ENSG00000120129 24.0647115614501 5.85598005614604e-128
#> ENSG00000101347 23.9998571419828 2.79035129961566e-127
#> ENSG00000189221 23.5243864281245 2.2964743349727e-122
#> ENSG00000211445 22.2860904352187 5.04142773173702e-110
#> padj
#> <numeric>
#> ENSG00000152583 2.03426604150712e-132
#> ENSG00000165995 2.03426604150712e-132
#> ENSG00000120129 3.38319487777077e-124
#> ENSG00000101347 1.20905921812347e-123
#> ENSG00000189221 7.96049863474937e-119
#> ENSG00000211445 1.45630042410777e-106

We can plot the counts for the top gene using plotCounts:
plotCounts(dds, which.min(res$pvalue), "dex")
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We can examine all the log2 fold changes (LFC) due to dexamethasone treatment over the mean of counts
using plotMA:
plotMA(res, ylim=c(-5,5))
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Note that there are many large LFC which are not significant (grey points) on the left side of the MA-plot
above. These obtain a large LFC because of the imprecision of log counts. For more informative visualization
and more accurate ranking of genes by effect size (the log fold change may sometimes be referred to as an
effect size), we recommend to use DESeq2 ’s functionality for shrinking LFCs. Our most recent methodological
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development is the apeglm shrinkage estimator, which is available in DESeq2 ’s lfcShrink function:
library("apeglm")
resultsNames(dds)
#> [1] "Intercept" "cell_N061011_vs_N052611"
#> [3] "cell_N080611_vs_N052611" "cell_N61311_vs_N052611"
#> [5] "dex_trt_vs_untrt"
res2 <- lfcShrink(dds, coef="dex_trt_vs_untrt", type="apeglm")
#> using 'apeglm' for LFC shrinkage. If used in published research, please cite:
#> Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
#> sequence count data: removing the noise and preserving large differences.
#> bioRxiv. https://doi.org/10.1101/303255

par(mfrow=c(1,2))
plotMA(res, ylim=c(-3,3), main="No shrinkage")
plotMA(res2, ylim=c(-3,3), main="apeglm")
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7.5.2 Minimum effect size

If we don’t want to report as significant genes with small LFC, we can specify a minimum biologically
meaningful effect size, by choosing an LFC and testing against this. We can either perform such a threshold
test using the unshrunken LFCs or the LFCs provided by lfcShrink using the apeglm method:
res.lfc <- results(dds, lfcThreshold=1)
res.lfc2 <- lfcShrink(dds, coef="dex_trt_vs_untrt", type="apeglm",

lfcThreshold=1)
#> using 'apeglm' for LFC shrinkage. If used in published research, please cite:
#> Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
#> sequence count data: removing the noise and preserving large differences.
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#> bioRxiv. https://doi.org/10.1101/303255
#> computing FSOS 'false sign or small' s-values (T=1)

Note that testing against an LFC threshold is not equivalent to testing against a null hypothesis of 0 and
then filtering on LFC values. We prefer the former, as discussed in Love, Huber, and Anders (2014) and Zhu,
Ibrahim, and Love (2018).

The apeglm method provides s-values (Stephens 2016) when svalue=TRUE or when we supply a minimum
effect size as above. These are analogous to q-values or adjusted p-values, in that the genes with s-values less
than α should have an aggregate rate of false sign or being smaller in absolute value than our given LFC
threshold, which is bounded by α.
par(mfrow=c(1,2))
plotMA(res.lfc, ylim=c(-5,5), main="No shrinkage, LFC test")
plotMA(res.lfc2, ylim=c(-5,5), main="apeglm, LFC test", alpha=0.01)
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7.6 AnnotationHub

7.6.1 Querying AnnotationHub

We will use the AnnotationHub package to attach additional information to the results table. AnnotationHub
provides an easy-to-use interface to more than 40,000 annotation records. A record may be peaks from a
ChIP-seq experiment from ENCODE, the sequence of the human genome, a TxDb containing information
about transcripts and genes, or an OrgDb containing general information about biological identifiers for a
particular organism.
library("AnnotationHub")
#>
#> Attaching package: 'AnnotationHub'
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#> The following object is masked from 'package:Biobase':
#>
#> cache
ah <- AnnotationHub()
#> snapshotDate(): 2018-06-27

The following code chunk, un-evaluated here, launches a browser for navigating all the records available
through AnnotationHub.
display(ah)

We can also query using keywords with the query function:
query(ah, c("OrgDb","Homo sapiens"))
#> AnnotationHub with 1 record
#> # snapshotDate(): 2018-06-27
#> # names(): AH61777
#> # $dataprovider: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
#> # $species: Homo sapiens
#> # $rdataclass: OrgDb
#> # $rdatadateadded: 2018-04-19
#> # $title: org.Hs.eg.db.sqlite
#> # $description: NCBI gene ID based annotations about Homo sapiens
#> # $taxonomyid: 9606
#> # $genome: NCBI genomes
#> # $sourcetype: NCBI/ensembl
#> # $sourceurl: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/, ftp://ftp.ensembl....
#> # $sourcesize: NA
#> # $tags: c("NCBI", "Gene", "Annotation")
#> # retrieve record with 'object[["AH61777"]]'

To pull down a particular record we use double brackets and the name of the record:
hs <- ah[["AH61777"]]
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.AnnotationHub/68523'
hs
#> OrgDb object:
#> | DBSCHEMAVERSION: 2.1
#> | Db type: OrgDb
#> | Supporting package: AnnotationDbi
#> | DBSCHEMA: HUMAN_DB
#> | ORGANISM: Homo sapiens
#> | SPECIES: Human
#> | EGSOURCEDATE: 2018-Apr4
#> | EGSOURCENAME: Entrez Gene
#> | EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
#> | CENTRALID: EG
#> | TAXID: 9606
#> | GOSOURCENAME: Gene Ontology
#> | GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-lite/
#> | GOSOURCEDATE: 2018-Mar28
#> | GOEGSOURCEDATE: 2018-Apr4
#> | GOEGSOURCENAME: Entrez Gene
#> | GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
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#> | KEGGSOURCENAME: KEGG GENOME
#> | KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes
#> | KEGGSOURCEDATE: 2011-Mar15
#> | GPSOURCENAME: UCSC Genome Bioinformatics (Homo sapiens)
#> | GPSOURCEURL:
#> | GPSOURCEDATE: 2018-Mar26
#> | ENSOURCEDATE: 2017-Dec04
#> | ENSOURCENAME: Ensembl
#> | ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta
#> | UPSOURCENAME: Uniprot
#> | UPSOURCEURL: http://www.UniProt.org/
#> | UPSOURCEDATE: Mon Apr 9 20:58:54 2018
#>
#> Please see: help('select') for usage information

7.6.2 Mapping IDs

The rownames of the results table are Ensembl IDs, and most of these are entries in OrgDb (although
thousands are not).
columns(hs)
#> [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT"
#> [5] "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"
#> [9] "EVIDENCEALL" "GENENAME" "GO" "GOALL"
#> [13] "IPI" "MAP" "OMIM" "ONTOLOGY"
#> [17] "ONTOLOGYALL" "PATH" "PFAM" "PMID"
#> [21] "PROSITE" "REFSEQ" "SYMBOL" "UCSCKG"
#> [25] "UNIGENE" "UNIPROT"
table(rownames(res) %in% keys(hs, "ENSEMBL"))
#>
#> FALSE TRUE
#> 3492 14540

We can use the mapIds function to add gene symbols, using ENSEMBL as the keytype, and requesting the
column SYMBOL.
res$symbol <- mapIds(hs, rownames(res), column="SYMBOL", keytype="ENSEMBL")
#> 'select()' returned 1:many mapping between keys and columns
head(res)
#> log2 fold change (MLE): dex trt vs untrt
#> Wald test p-value: dex trt vs untrt
#> DataFrame with 6 rows and 7 columns
#> baseMean log2FoldChange lfcSE
#> <numeric> <numeric> <numeric>
#> ENSG00000000003 708.84032163709 -0.38188890052585 0.100800595908449
#> ENSG00000000419 520.444343803335 0.206203578138288 0.111340654960802
#> ENSG00000000457 237.237392013978 0.0373231179429298 0.140524882321204
#> ENSG00000000460 57.9518862998956 -0.0907678445557818 0.276878121334175
#> ENSG00000000971 5819.01711439455 0.425781621579506 0.0897314693828554
#> ENSG00000001036 1282.59042750161 -0.241675199658759 0.0898743244338321
#> stat pvalue padj
#> <numeric> <numeric> <numeric>
#> ENSG00000000003 -3.78855796519988 0.000151524241731238 0.00121584173966936
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#> ENSG00000000419 1.85200615364516 0.0640249392675146 0.184546856375281
#> ENSG00000000457 0.265597930604338 0.790548879512378 0.903592643032674
#> ENSG00000000460 -0.32782599115598 0.743043234238656 0.878207188857688
#> ENSG00000000971 4.74506463014478 2.08439772491752e-06 2.5495258552061e-05
#> ENSG00000001036 -2.68903495165281 0.00716589158352556 0.0334768821902062
#> symbol
#> <character>
#> ENSG00000000003 TSPAN6
#> ENSG00000000419 DPM1
#> ENSG00000000457 SCYL3
#> ENSG00000000460 C1orf112
#> ENSG00000000971 CFH
#> ENSG00000001036 FUCA2

7.7 Building reports

7.7.1 ReportingTools

There are many packages for building interactive reports from Bioconductor. Two of these are ReportingTools
and Glimma, which both provide HTML reports that allow for collaborators to examine the top genes (or
whatever features of interest) from a genomic analysis.

The code for compiling a ReportingTools report is:
library("ReportingTools")
#> Loading required package: knitr
#>
#>
tmp <- tempdir() # you would instead use a meaningful path here
rep <- HTMLReport(shortName="airway", title="Airway DGE",

basePath=tmp, reportDirectory="report")
publish(res, rep, dds, n=20, make.plots=TRUE, factor=dds$dex)
finish(rep)
#> [1] "/tmp/Rtmp5eNWI7/report/airway.html"

This last line, un-evaluated would launch the report in a web browser:
browseURL(file.path(tmp,"report","airway.html"))

7.7.2 Glimma

Another package which can generate interactive reports is Glimma. The glMDPlot constructs an interactive
MA-plot where hovering over a gene in the MA-plot on the left side will display the counts for the samples
on the right hand side. Clicking will bring up the gene’s information in a tooltip and in a list at the bottom
of the screen. Hovering on a sample on the right hand side will give the sample ID in a tooltip.
library("Glimma")
status <- as.numeric(res$padj < .1)
anno <- data.frame(GeneID=rownames(res), symbol=res$symbol)
glMDPlot(res2, status=status, counts=counts(dds,normalized=TRUE),

groups=dds$dex, transform=FALSE,
samples=colnames(dds), anno=anno,
path=tmp, folder="glimma", launch=FALSE)
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This last line would launch the report in a web browser:
browseURL(file.path(tmp,"glimma","MD-Plot.html"))

7.8 Integration with ZINB-WaVE

7.8.1 Simulate with splatter

In this last section, we show that DESeq2 can be integrated with another Bioconductor package zinbwave
(Risso et al. 2018a) in order to model and account for additional zeros (more than expected by the Negative
Binomial model). This can be useful for single cell RNA-seq experiments.

Here we use the splatter package to simulate single-cell RNA-seq data (Zappia, Phipson, and Oshlack 2017).
We then use the methods defined in Van den Berge et al. (2018) to combine zinbwave observation weights
with DESeq2 modeling of negative binomial counts.

From Van den Berge et al. (2018):

It is important to note that while methods such as ZINB-WaVE and ZINGER can successfully
identify excess zeros, they cannot, however, readily discriminate between their underlying causes,
i.e., between technical (e.g., dropout) and biological (e.g., bursting) zeros.

The above note implies that the zero-inflation weighting approach outlined below can be used when the
interesting signal is not in the zero component. That is, if you wanted to find biological differences in
transcriptional bursting across groups of cells, the below approach would not help you find these differences.
It instead helps to uncover differences in counts besides the zero component (whether those zeros be biological
or technical).

7.8.2 Simulate single-cell count data with splatter

The following chunks of code create a splatter simulation:
library("splatter")
#> Loading required package: SingleCellExperiment
params <- newSplatParams()
params <- setParam(params, "de.facLoc", 1)
params <- setParam(params, "de.facScale", .25)
params <- setParam(params, "dropout.type", "experiment")
params <- setParam(params, "dropout.mid", 3)

set.seed(1)
sim <- splatSimulate(params, group.prob=c(.5,.5), method="groups")
#> Getting parameters...
#> Creating simulation object...
#> Simulating library sizes...
#> Simulating gene means...
#> Simulating group DE...
#> Simulating cell means...
#> Simulating BCV...
#> Simulating counts...
#> Simulating dropout (if needed)...
#> Done!

We can plot the amount of dropouts over the true counts:
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plot(log10(rowMeans(assays(sim)[["TrueCounts"]])),
rowMeans(assays(sim)[["Dropout"]]))
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We will store the true log2 fold change for comparison:
rowData(sim)$log2FC <- with(rowData(sim), log2(DEFacGroup2/DEFacGroup1))

The true dispersion for the Negative Binomial component, over the mean:
rowData(sim)$trueDisp <- rowMeans(assays(sim)[["BCV"]])^2
gridlines <- c(1e-2,1e-1,1); cols <- c("blue","red","darkgreen")
with(rowData(sim)[rowData(sim)$GeneMean> 1,],

plot(GeneMean, trueDisp, log="xy", xlim=c(1,300), ylim=c(.01,5)))
abline(h=gridlines, col=cols)
text(300, gridlines, labels=gridlines, col=cols, pos=3)



156 CHAPTER 7. 201: RNA-SEQ DATA ANALYSIS WITH DESEQ2

1 2 5 10 20 50 100 200

0.
01

0.
05

0.
20

1.
00

5.
00

GeneMean

tr
ue

D
is

p

0.01

0.1

1

7.8.3 Model zeros with zinbwave

The following code subsets the dataset and creates a condition variable that we will use to test for differential
expression:
library(zinbwave)
keep <- rowSums(counts(sim) >= 5) >= 25
table(keep)
#> keep
#> FALSE TRUE
#> 9025 975
zinb <- sim[keep,]
zinb$condition <- factor(zinb$Group)

We need to re-arrange the assays in the zinb object such that "counts" is the first assay:
nms <- c("counts", setdiff(assayNames(zinb), "counts"))
assays(zinb) <- assays(zinb)[nms]

Finally we fit the ZINB-WaVE model. See ?zinbwave and the zinbwave vignette for more details, including
options on parallelization. It runs in less than a minute on this simulated dataset (with not so many cells).
zinb <- zinbwave(zinb, K=0, BPPARAM=SerialParam(), epsilon=1e12)

7.8.4 Model non-zeros with DESeq2

Now we import the zinb object using DESeqDataSet (which works because the SingleCellExperiment object
builds on top of the SummarizedExperiment). All of the simulation information comes along in the metadata
columns of the object.

Van den Berge et al. (2018) and others have shown the LRT may perform better for null hypothesis testing,
so we use the LRT. In order to use the Wald test, it is recommended to set useT=TRUE.
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zdds <- DESeqDataSet(zinb, design=~condition)
zdds <- DESeq(zdds, test="LRT", reduced=~1,

sfType="poscounts", minmu=1e-6, minRep=Inf)
#> estimating size factors
#> estimating dispersions
#> gene-wise dispersion estimates
#> mean-dispersion relationship
#> final dispersion estimates
#> fitting model and testing

7.8.5 Plot dispersion estimates

It is recommended to plot the dispersion estimates for DESeq2 on single-cell data. As discussed in the DESeq2
paper, it becomes difficult to accurately estimate the dispersion when the counts are very small, because the
Poisson component of the variance is dominant. Therefore we see some very low dispersion estimates here,
although the trend is still accurately capturing the upper proportion. So here everything looks good.
plotDispEsts(zdds)
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If the parametric trend fails to fit (there would be a warning in this case), one should check the dispersion
plot as above. If it looks like the dispersion fit is being thrown off by the low count genes with low dispersion
estimates at the bottom of the plot, there is a relatively easy solution: one can filter out more of the low
count genes only for the dispersion estimation step, so that the trend still captures the upper portion. This is
pretty easy to do in DESeq2, to filter genes solely for the dispersion trend estimation, but to use a larger set
for the rest of the analysis. An example of how this can be done:
keepForDispTrend <- rowSums(counts(zdds) >= 10) >= 25
zdds2 <- estimateDispersionsFit(zdds[keepForDispTrend,])
plotDispEsts(zdds2)
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One would then assign the dispersion function to the original dataset, re-estimate final dispersions, check
plotDispEsts, and then either re-run the Wald or LRT function:
dispersionFunction(zdds) <- dispersionFunction(zdds2)
zdds <- estimateDispersionsMAP(zdds)
#> found already estimated dispersions, removing these
zdds <- nbinomLRT(zdds, reduced=~1, minmu=1e-6)
#> found results columns, replacing these

7.8.6 Evaluation against truth

Compare dispersion on the non-zero-component counts to the true value used for simulation.
with(mcols(zdds), plot(trueDisp, dispMAP, log="xy"))
abline(0,1,col="red")
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Extract results table:
zres <- results(zdds, independentFiltering=FALSE)
plot(mcols(zdds)$log2FC, zres$log2FoldChange, ylim=c(-4,4)); abline(0,1,col="red")
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Below we show that the “simple” LFC does not work - it over-estimates the true DE LFC because of the
dropout zeros in the group with the smaller mean. It also has a lot of noise for the null genes.
ncts <- counts(zdds, normalized=TRUE)
simple.lfc <- log2(rowMeans(ncts[,zdds$condition == "Group2"])/

rowMeans(ncts[,zdds$condition == "Group1"]))
plot(mcols(zdds)$log2FC, simple.lfc, ylim=c(-4,4)); abline(0,1,col="red")
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How well do we do in null hypothesis testing:
tab <- table(sig=zres$padj < .05, DE.status=mcols(zdds)$log2FC != 0)
tab
#> DE.status
#> sig FALSE TRUE
#> FALSE 727 22
#> TRUE 8 218
round(prop.table(tab, 1), 3)
#> DE.status
#> sig FALSE TRUE
#> FALSE 0.971 0.029
#> TRUE 0.035 0.965



Chapter 8

202: Analysis of single-cell RNA-seq
data: Dimensionality reduction,
clustering, and lineage inference

Authors: Diya Das1, Kelly Street2, Davide Risso3 Last modified: 28 June, 2018.

8.1 Overview

8.1.1 Description

This workshop will be presented as a lab session (brief introduction followed by hands-on coding) that
instructs participants in a Bioconductor workflow for the analysis of single-cell RNA-sequencing data, in
three parts:

1. dimensionality reduction that accounts for zero inflation, over-dispersion, and batch effects
2. cell clustering that employs a resampling-based approach resulting in robust and stable clusters
3. lineage trajectory analysis that uncovers continuous, branching developmental processes

We will provide worked examples for lab sessions, and a set of stand-alone notes in this repository.

Note: A previous version of this workshop was well-attended at BioC 2017, but the tools presented have
been significantly updated for interoperability (most notably, through the use of the SingleCellExperiment
class), and we have been receiving many requests to provide an updated workflow. We plan to incorporate
feedback from this workshop into a revised version of our F1000 Workflow.

8.1.2 Pre-requisites

We expect basic knowledge of R syntax. Some familiarity with S4 objects may be helpful, but not required.
More importantly, participants should be familiar with the concept and design of RNA-sequencing experiments.
Direct experience with single-cell RNA-seq is not required, and the main challenges of single-cell RNA-seq
compared to bulk RNA-seq will be illustrated.

1University of California at Berkeley, Berkeley, CA, USA
2University of California at Berkeley, Berkeley, CA, USA
3Weill Cornell Medicine, New York, NY, USA
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8.1.3 Participation

This will be a hands-on workshop, in which each student, using their laptop, will analyze a provided example
datasets. The workshop will be a mix of example code that the instructors will show to the students (available
through this repository) and short exercises.

8.1.4 R / Bioconductor packages used

1. zinbwave : https://bioconductor.org/packages/zinbwave
2. clusterExperiment: https://bioconductor.org/packages/clusterExperiment
3. slingshot: https://bioconductor.org/packages/slingshot

8.1.5 Time outline

Activity Time
Intro to single-cell RNA-seq analysis 15m
zinbwave (dimensionality reduction) 30m
clusterExperiment (clustering) 30m
slingshot (lineage trajectory analysis) 30m
Questions / extensions 15m

8.1.6 Workshop goals and objectives

Learning goals

• describe the goals of single-cell RNA-seq analysis
• identify the main steps of a typical single-cell RNA-seq analysis
• evaluate the results of each step in terms of model fit
• synthesize results of successive steps to interpret biological significance and develop biological models
• apply this workflow to carry out a complete analysis of other single-cell RNA-seq datasets

Learning objectives

• compute and interpret low-dimensional representations of single-cell data
• identify and remove sources of technical variation from the data
• identify sub-populations of cells (clusters) and evaluate their robustness
• infer lineage trajectories corresponding to differentiating cells
• order cells by developmental “pseudotime”
• identify genes that play an important role in cell differentiation

8.2 Getting started

The workflow presented in this workshop consists of four main steps:

1. dimensionality reduction accounting for zero inflation and over-dispersion and adjusting for gene and
cell-level covariates, using the zinbwave Bioconductor package;

2. robust and stable cell clustering using resampling-based sequential ensemble clustering, as implemented
in the clusterExperiment Bioconductor package;

3. inference of cell lineages and ordering of the cells by developmental progression along lineages, using
the slingshot R package; and

4. DE analysis along lineages.

https://bioconductor.org/packages/zinbwave
https://bioconductor.org/packages/clusterExperiment
https://bioconductor.org/packages/slingshot
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Figure 8.1: Workflow for analyzing scRNA-seq datasets. On the right, main plots generated by the workflow.

Throughout the workflow, we use a single SingleCellExperiment object to store the scRNA-seq data along
with any gene or cell-level metadata available from the experiment.

8.2.1 The data

This workshop uses data from a scRNA-seq study of stem cell differentiation in the mouse olfactory epithelium
(OE) (Fletcher et al. 2017). The olfactory epithelium contains mature olfactory sensory neurons (mOSN) that
are continuously renewed in the epithelium via neurogenesis through the differentiation of globose basal cells
(GBC), which are the actively proliferating cells in the epithelium. When a severe injury to the entire tissue
happens, the olfactory epithelium can regenerate from normally quiescent stem cells called horizontal basal
cells (HBC), which become activated to differentiate and reconstitute all major cell types in the epithelium.

The scRNA-seq dataset we use as a case study was generated to study the differentitation of HBC stem cells
into different cell types present in the olfactory epithelium. To map the developmental trajectories of the
multiple cell lineages arising from HBCs, scRNA-seq was performed on FACS-purified cells using the Fluidigm
C1 microfluidics cell capture platform followed by Illumina sequencing. The expression level of each gene in
a given cell was quantified by counting the total number of reads mapping to it. Cells were then assigned
to different lineages using a statistical analysis pipeline analogous to that in the present workflow. Finally,
results were validated experimentally using in vivo lineage tracing. Details on data generation and statistical
methods are available in (Fletcher et al. 2017; Risso et al. 2018b; Street et al. 2018; Risso et al. 2018a).

In this workshop, we describe a sequence of steps to recover the lineages found in the original study, starting
from the genes x cells matrix of raw counts publicly-available at https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE95601.

The following packages are needed.
suppressPackageStartupMessages({

# Bioconductor
library(BiocParallel)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95601
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95601
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Figure 8.2: Stem cell differentiation in the mouse olfactory epithelium. This figure was reproduced with kind
permission from Fletcher et al. (2017).

library(SingleCellExperiment)
library(clusterExperiment)
library(scone)
library(zinbwave)
library(slingshot)
# CRAN
library(gam)
library(RColorBrewer)

})
#> Warning: replacing previous import 'SingleCellExperiment::weights' by
#> 'stats::weights' when loading 'slingshot'
#> Warning in rgl.init(initValue, onlyNULL): RGL: unable to open X11 display
#> Warning: 'rgl_init' failed, running with rgl.useNULL = TRUE
set.seed(20)

8.2.2 Parallel computing

The BiocParallel package can be used to allow for parallel computing in zinbwave. Here, we use a single
CPU to run the function, registering the serial mode of BiocParallel. Users that have access to more
than one core in their system are encouraged to use multiple cores to increase speed.
register(SerialParam())

8.3 The SingleCellExperiment class

Counts for all genes in each cell are available as part of the GitHub R package drisso/fletcher2017data.
Before filtering, the dataset has 849 cells and 28,361 detected genes (i.e., genes with non-zero read counts).
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Figure 8.3: Schematic view of the SingleCellExperiment class.

library(fletcher2017data)

data(fletcher)
fletcher
#> class: SingleCellExperiment
#> dim: 28284 849
#> metadata(0):
#> assays(1): counts
#> rownames(28284): Xkr4 LOC102640625 ... Ggcx.1 eGFP
#> rowData names(0):
#> colnames(849): OEP01_N706_S501 OEP01_N701_S501 ... OEL23_N704_S503
#> OEL23_N703_S502
#> colData names(19): Experiment Batch ... CreER ERCC_reads
#> reducedDimNames(0):
#> spikeNames(0):

Throughout the workshop, we use the class SingleCellExperiment to keep track of the counts and their
associated metadata within a single object.

The cell-level metadata contain quality control measures, sequencing batch ID, and cluster and lineage labels
from the original publication (Fletcher et al. 2017). Cells with a cluster label of -2 were not assigned to any
cluster in the original publication.
colData(fletcher)
#> DataFrame with 849 rows and 19 columns
#> Experiment Batch publishedClusters NREADS
#> <factor> <factor> <numeric> <numeric>
#> OEP01_N706_S501 K5ERRY_UI_96HPT Y01 1 3313260
#> OEP01_N701_S501 K5ERRY_UI_96HPT Y01 1 2902430
#> OEP01_N707_S507 K5ERRY_UI_96HPT Y01 1 2307940
#> OEP01_N705_S501 K5ERRY_UI_96HPT Y01 1 3337400
#> OEP01_N704_S507 K5ERRY_UI_96HPT Y01 -2 117892
#> ... ... ... ... ...
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#> OEL23_N704_S510 K5ERP63CKO_UI_14DPT P14 -2 2407440
#> OEL23_N705_S502 K5ERP63CKO_UI_14DPT P14 -2 2308940
#> OEL23_N706_S502 K5ERP63CKO_UI_14DPT P14 12 2215640
#> OEL23_N704_S503 K5ERP63CKO_UI_14DPT P14 12 2673790
#> OEL23_N703_S502 K5ERP63CKO_UI_14DPT P14 7 2450320
#> NALIGNED RALIGN TOTAL_DUP PRIMER
#> <numeric> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 3167600 95.6035 47.9943 0.0154566
#> OEP01_N701_S501 2757790 95.0167 45.015 0.0182066
#> OEP01_N707_S507 2178350 94.3852 43.7832 0.0219196
#> OEP01_N705_S501 3183720 95.3952 43.2688 0.0183041
#> OEP01_N704_S507 98628 83.6596 18.0576 0.0623744
#> ... ... ... ... ...
#> OEL23_N704_S510 2305060 95.7472 47.1489 0.0159111
#> OEL23_N705_S502 2203300 95.4244 62.5638 0.0195812
#> OEL23_N706_S502 2108490 95.1637 50.6643 0.0182207
#> OEL23_N704_S503 2568300 96.0546 60.5481 0.0155611
#> OEL23_N703_S502 2363500 96.4567 48.4164 0.0122704
#> PCT_RIBOSOMAL_BASES PCT_CODING_BASES PCT_UTR_BASES
#> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 2e-06 0.20013 0.230654
#> OEP01_N701_S501 0 0.182461 0.20181
#> OEP01_N707_S507 0 0.152627 0.207897
#> OEP01_N705_S501 2e-06 0.169514 0.207342
#> OEP01_N704_S507 1.4e-05 0.110724 0.199174
#> ... ... ... ...
#> OEL23_N704_S510 0 0.287346 0.314104
#> OEL23_N705_S502 0 0.337264 0.297077
#> OEL23_N706_S502 7e-06 0.244333 0.262663
#> OEL23_N704_S503 0 0.343203 0.338217
#> OEL23_N703_S502 8e-06 0.259367 0.238239
#> PCT_INTRONIC_BASES PCT_INTERGENIC_BASES PCT_MRNA_BASES
#> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 0.404205 0.165009 0.430784
#> OEP01_N701_S501 0.465702 0.150027 0.384271
#> OEP01_N707_S507 0.511416 0.12806 0.360524
#> OEP01_N705_S501 0.457556 0.165586 0.376856
#> OEP01_N704_S507 0.489514 0.200573 0.309898
#> ... ... ... ...
#> OEL23_N704_S510 0.250658 0.147892 0.60145
#> OEL23_N705_S502 0.230214 0.135445 0.634341
#> OEL23_N706_S502 0.355899 0.137097 0.506997
#> OEL23_N704_S503 0.174696 0.143885 0.68142
#> OEL23_N703_S502 0.376091 0.126294 0.497606
#> MEDIAN_CV_COVERAGE MEDIAN_5PRIME_BIAS MEDIAN_3PRIME_BIAS
#> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 0.843857 0.061028 0.521079
#> OEP01_N701_S501 0.91437 0.03335 0.373993
#> OEP01_N707_S507 0.955405 0.014606 0.49123
#> OEP01_N705_S501 0.81663 0.101798 0.525238
#> OEP01_N704_S507 1.19978 0 0.706512
#> ... ... ... ...
#> OEL23_N704_S510 0.698455 0.198224 0.419745
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#> OEL23_N705_S502 0.830816 0.105091 0.398755
#> OEL23_N706_S502 0.805627 0.103363 0.431862
#> OEL23_N704_S503 0.745201 0.118615 0.38422
#> OEL23_N703_S502 0.711685 0.196725 0.377926
#> CreER ERCC_reads
#> <numeric> <numeric>
#> OEP01_N706_S501 1 10516
#> OEP01_N701_S501 3022 9331
#> OEP01_N707_S507 2329 7386
#> OEP01_N705_S501 717 6387
#> OEP01_N704_S507 60 992
#> ... ... ...
#> OEL23_N704_S510 659 0
#> OEL23_N705_S502 1552 0
#> OEL23_N706_S502 0 0
#> OEL23_N704_S503 0 0
#> OEL23_N703_S502 2222 0

8.4 Pre-processing

Using the Bioconductor package scone, we remove low-quality cells according to the quality control filter
implemented in the function metric_sample_filter and based on the following criteria (Figure 8.4): (1)
Filter out samples with low total number of reads or low alignment percentage and (2) filter out samples
with a low detection rate for housekeeping genes. See the scone vignette for details on the filtering procedure.

8.4.1 Sample filtering

# QC-metric-based sample-filtering
data("housekeeping")
hk = rownames(fletcher)[toupper(rownames(fletcher)) %in% housekeeping$V1]

mfilt <- metric_sample_filter(counts(fletcher),
nreads = colData(fletcher)$NREADS,
ralign = colData(fletcher)$RALIGN,
pos_controls = rownames(fletcher) %in% hk,
zcut = 3, mixture = FALSE,
plot = TRUE)

# Simplify to a single logical
mfilt <- !apply(simplify2array(mfilt[!is.na(mfilt)]), 1, any)
filtered <- fletcher[, mfilt]
dim(filtered)
#> [1] 28284 747

After sample filtering, we are left with 747 good quality cells.

Finally, for computational efficiency, we retain only the 1,000 most variable genes. This seems to be a
reasonnable choice for the illustrative purpose of this workflow, as we are able to recover the biological signal
found in the published analysis ((Fletcher et al. 2017)). In general, however, we recommend care in selecting
a gene filtering scheme, as an appropriate choice is dataset-dependent.

https://www.bioconductor.org/packages/release/bioc/vignettes/scone/inst/doc/sconeTutorial.html
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Figure 8.4: SCONE: Filtering of low-quality cells.

We can use to functions from the clusterExperiment package to compute a filter statistics based on the
variance (makeFilterStats) and to apply the filter to the data (filterData).
filtered <- makeFilterStats(filtered, filterStats="var", transFun = log1p)
filtered <- filterData(filtered, percentile=1000, filterStats="var")
filtered
#> class: SingleCellExperiment
#> dim: 1000 747
#> metadata(0):
#> assays(1): counts
#> rownames(1000): Cbr2 Cyp2f2 ... Rnf13 Atp7b
#> rowData names(1): var
#> colnames(747): OEP01_N706_S501 OEP01_N701_S501 ... OEL23_N704_S503
#> OEL23_N703_S502
#> colData names(19): Experiment Batch ... CreER ERCC_reads
#> reducedDimNames(0):
#> spikeNames(0):

In the original work (Fletcher et al. 2017), cells were clustered into 14 different clusters, with 151 cells not
assigned to any cluster (i.e., cluster label of -2).
publishedClusters <- colData(filtered)[, "publishedClusters"]
col_clus <- c("transparent", "#1B9E77", "antiquewhite2", "cyan", "#E7298A",

"#A6CEE3", "#666666", "#E6AB02", "#FFED6F", "darkorchid2",
"#B3DE69", "#FF7F00", "#A6761D", "#1F78B4")

names(col_clus) <- sort(unique(publishedClusters))
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Figure 8.5: ZINB-WaVE: Schematic view of the ZINB-WaVE model. This figure was reproduced with kind
permission from Risso et al. (2017).

table(publishedClusters)
#> publishedClusters
#> -2 1 2 3 4 5 7 8 9 10 11 12 14 15
#> 151 90 25 54 35 93 58 27 74 26 21 35 26 32

8.5 Normalization and dimensionality reduction: ZINB-WaVE

In scRNA-seq analysis, dimensionality reduction is often used as a preliminary step prior to downstream
analyses, such as clustering, cell lineage and pseudotime ordering, and the identification of DE genes.
This allows the data to become more tractable, both from a statistical (cf. curse of dimensionality) and
computational point of view. Additionally, technical noise can be reduced while preserving the often
intrinsically low-dimensional signal of interest (Dijk et al. 2017; Pierson and Yau 2015; Risso et al. 2018b).

Here, we perform dimensionality reduction using the zero-inflated negative binomial-based wanted variation
extraction (ZINB-WaVE) method implemented in the Bioconductor R package zinbwave. The method fits a
ZINB model that accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data.
The model can include a cell-level intercept, which serves as a global-scaling normalization factor. The user
can also specify both gene-level and cell-level covariates. The inclusion of observed and unobserved cell-level
covariates enables normalization for complex, non-linear effects (often referred to as batch effects), while
gene-level covariates may be used to adjust for sequence composition effects (e.g., gene length and GC-content
effects). A schematic view of the ZINB-WaVE model is provided in Figure 8.5. For greater detail about the
ZINB-WaVE model and estimation procedure, please refer to the original manuscript (Risso et al. 2018b).

As with most dimensionality reduction methods, the user needs to specify the number of dimensions for the
new low-dimensional space. Here, we use K = 50 dimensions and adjust for batch effects via the matrix X.
clustered <- zinbwave(filtered, K = 50, X = "~ Batch", residuals = TRUE, normalizedValues = TRUE)))

Note that the fletcher2017data package includes the object clustered that already contains the ZINB-
WaVE factors. We can load such objects to avoid waiting for the computations.
data(clustered)
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8.5.1 Normalization

The function zinbwave returns a SingleCellExperiment object that includes normalized expression measures,
defined as deviance residuals from the fit of the ZINB-WaVE model with user-specified gene- and cell-level
covariates. Such residuals can be used for visualization purposes (e.g., in heatmaps, boxplots). Note that, in
this case, the low-dimensional matrix W is not included in the computation of residuals to avoid the removal
of the biological signal of interest.
assayNames(clustered)
#> [1] "normalizedValues" "residuals" "counts"
norm <- assay(clustered, "normalizedValues")
norm[1:3,1:3]
#> OEP01_N706_S501 OEP01_N701_S501 OEP01_N707_S507
#> Cbr2 4.531898 4.369185 -4.142982
#> Cyp2f2 4.359680 4.324476 4.124527
#> Gstm1 4.724216 4.621898 4.403587

8.5.2 Dimensionality reduction

The zinbwave function’s main use is to perform dimensionality reduction. The resulting low-dimensional
matrix W is stored in the reducedDim slot named zinbwave.
reducedDimNames(clustered)
#> [1] "zinbwave"
W <- reducedDim(clustered, "zinbwave")
dim(W)
#> [1] 747 50
W[1:3, 1:3]
#> W1 W2 W3
#> OEP01_N706_S501 0.5494761 1.1745361 -0.93175747
#> OEP01_N701_S501 0.4116797 0.3015379 -0.46922527
#> OEP01_N707_S507 0.7394759 0.3365600 -0.07959226

The low-rank matrix W can be visualized in two dimensions by performing multi-dimensional scaling (MDS)
using the Euclidian distance. To verify that W indeed captures the biological signal of interest, we display the
MDS results in a scatterplot with colors corresponding to the original published clusters (Figure 8.6).
W <- reducedDim(clustered)
d <- dist(W)
fit <- cmdscale(d, eig = TRUE, k = 2)
plot(fit$points, col = col_clus[as.character(publishedClusters)], main = "",

pch = 20, xlab = "Component 1", ylab = "Component 2")
legend(x = "topleft", legend = unique(names(col_clus)), cex = .5, fill = unique(col_clus), title = "Sample")

8.6 Cell clustering: RSEC

The next step is to cluster the cells according to the low-dimensional matrix W computed in the previous step.
We use the resampling-based sequential ensemble clustering (RSEC) framework implemented in the RSEC
function from the Bioconductor R package clusterExperiment. Specifically, given a set of user-supplied base
clustering algorithms and associated tuning parameters (e.g., k-means, with a range of values for k), RSEC
generates a collection of candidate clusterings, with the option of resampling cells and using a sequential tight
clustering procedure as in (Tseng and Wong 2005). A consensus clustering is obtained based on the levels of
co-clustering of samples across the candidate clusterings. The consensus clustering is further condensed by
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Figure 8.6: ZINB-WaVE: MDS of the low-dimensional matrix W, where each point represents a cell and cells
are color-coded by original published clustering.

merging similar clusters, which is done by creating a hierarchy of clusters, working up the tree, and testing
for differential expression between sister nodes, with nodes of insufficient DE collapsed. As in supervised
learning, resampling greatly improves the stability of clusters and considering an ensemble of methods and
tuning parameters allows us to capitalize on the different strengths of the base algorithms and avoid the
subjective selection of tuning parameters.
clustered <- RSEC(clustered, k0s = 4:15, alphas = c(0.1),

betas = 0.8, reduceMethod="zinbwave",
clusterFunction = "hierarchical01", minSizes=1,
ncores = NCORES, isCount=FALSE,
dendroReduce="zinbwave",
subsampleArgs = list(resamp.num=100,

clusterFunction="kmeans",
clusterArgs=list(nstart=10)),

verbose=TRUE,
consensusProportion = 0.7,
mergeMethod = "none", random.seed=424242,
consensusMinSize = 10)

Again, the previously loaded clustered object already contains the results of the RSEC run above, so we do
not evaluate the above chunk here.
clustered
#> class: ClusterExperiment
#> dim: 1000 747
#> reducedDimNames: zinbwave
#> filterStats: var
#> -----------
#> Primary cluster type: makeConsensus
#> Primary cluster label: makeConsensus
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#> Table of clusters (of primary clustering):
#> -1 c1 c2 c3 c4 c5 c6 c7
#> 184 145 119 105 100 48 33 13
#> Total number of clusterings: 13
#> Dendrogram run on 'makeConsensus' (cluster index: 1)
#> -----------
#> Workflow progress:
#> clusterMany run? Yes
#> makeConsensus run? Yes
#> makeDendrogram run? Yes
#> mergeClusters run? No

Note that the results of the RSEC function is an object of the ClusterExperiment class, which extends the
SingleCellExperiment class, by adding additional information on the clustering results.
is(clustered, "SingleCellExperiment")
#> [1] TRUE
slotNames(clustered)
#> [1] "transformation" "clusterMatrix"
#> [3] "primaryIndex" "clusterInfo"
#> [5] "clusterTypes" "dendro_samples"
#> [7] "dendro_clusters" "dendro_index"
#> [9] "dendro_outbranch" "coClustering"
#> [11] "clusterLegend" "orderSamples"
#> [13] "merge_index" "merge_dendrocluster_index"
#> [15] "merge_method" "merge_demethod"
#> [17] "merge_cutoff" "merge_nodeProp"
#> [19] "merge_nodeMerge" "int_elementMetadata"
#> [21] "int_colData" "int_metadata"
#> [23] "reducedDims" "rowRanges"
#> [25] "colData" "assays"
#> [27] "NAMES" "elementMetadata"
#> [29] "metadata"

The resulting candidate clusterings can be visualized using the plotClusters function (Figure 8.7), where
columns correspond to cells and rows to different clusterings. Each sample is color-coded based on its
clustering for that row, where the colors have been chosen to try to match up clusters that show large overlap
accross rows. The first row correspond to a consensus clustering across all candidate clusterings.
plotClusters(clustered)

The plotCoClustering function produces a heatmap of the co-clustering matrix, which records, for each
pair of cells, the proportion of times they were clustered together across the candidate clusters (Figure 8.8).
plotCoClustering(clustered)

The distribution of cells across the consensus clusters can be visualized in Figure 8.9 and is as follows:
table(primaryClusterNamed(clustered))
#>
#> -1 c1 c2 c3 c4 c5 c6 c7
#> 184 145 119 105 100 48 33 13

plotBarplot(clustered, legend = FALSE)

The distribution of cells in our clustering overall agrees with that in the original published clustering (Figure
8.10), the main difference being that several of the published clusters were merged here into single clusters.
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Figure 8.7: RSEC: Candidate clusterings found using the function RSEC from the clusterExperiment package.
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Figure 8.8: RSEC: Heatmap of co-clustering matrix.
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Figure 8.9: RSEC: Barplot of number of cells per cluster for our workflow’s RSEC clustering.

This discrepancy is likely caused by the fact that we started with the top 1,000 genes, which might not be
enough to discriminate between closely related clusters.
clustered <- addClusterings(clustered, colData(clustered)$publishedClusters,

clusterLabel = "publishedClusters")

## change default color to match with Figure 7
clusterLegend(clustered)$publishedClusters[, "color"] <-

col_clus[clusterLegend(clustered)$publishedClusters[, "name"]]

plotBarplot(clustered, whichClusters=c("makeConsensus", "publishedClusters"),
xlab = "", legend = FALSE,missingColor="white")

plotClustersTable(clustered, whichClusters=c("makeConsensus","publishedClusters"))

Figure 8.12 displays a heatmap of the normalized expression measures for the 1,000 most variable genes,
where cells are clustered according to the RSEC consensus.
# Set colors for additional sample data
experimentColors <- bigPalette[1:nlevels(colData(clustered)$Experiment)]
batchColors <- bigPalette[1:nlevels(colData(clustered)$Batch)]
metaColors <- list("Experiment" = experimentColors,

"Batch" = batchColors)

plotHeatmap(clustered,
whichClusters = c("makeConsensus","publishedClusters"), clusterFeaturesData = "all",
clusterSamplesData = "dendrogramValue", breaks = 0.99,
colData = c("Batch", "Experiment"),
clusterLegend = metaColors, annLegend = FALSE, main = "")

Finally, we can visualize the cells in a two-dimensional space using the MDS of the low-dimensional matrix W
and coloring the cells according to their newly-found RSEC clusters (Figure 8.13); this is anologous to Figure
8.6 for the original published clusters.
plotReducedDims(clustered,whichCluster="primary",reducedDim="zinbwave",pch=20,

xlab = "Component1", ylab = "Component2",legendTitle="Sample",main="",
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Figure 8.10: RSEC: Barplot of number of cells per cluster, for our workflow’s RSEC clustering, color-coded
by original published clustering.
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the original published clustering.
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Figure 8.12: RSEC: Heatmap of the normalized expression measures for the 1,000 most variable genes, where
rows correspond to genes and columns to cells ordered by RSEC clusters.

plotUnassigned=FALSE
)

8.7 Cell lineage and pseudotime inference: Slingshot

We now demonstrate how to use the Bioconductor package slingshot to infer branching cell lineages and
order cells by developmental progression along each lineage. The method, proposed in (Street et al. 2018),
comprises two main steps: (1) The inference of the global lineage structure (i.e., the number of lineages
and where they branch) using a minimum spanning tree (MST) on the clusters identified above by RSEC
and (2) the inference of cell pseudotime variables along each lineage using a novel method of simultaneous
principal curves. The approach in (1) allows the identification of any number of novel lineages, while also
accommodating the use of domain-specific knowledge to supervise parts of the tree (e.g., known terminal
states); the approach in (2) yields robust pseudotimes for smooth, branching lineages.

This analysis is performed out by the slingshot function and the results are stored in a SlingshotDataSet
object. The minimal input to this function is a low-dimensional representation of the cells and a set of
cluster labels; these can be separate objects (ie. a matrix and a vector) or, as below, components of a
SingleCellExperiment object. When a SingleCellExperiment object is provided as input, the ouput will
be an updated object containing a SlingshotDataSet as an element of the int_metadata list, which can
be accessed through the SlingshotDataSet function. For more low-level control of the lineage inference
procedure, the two steps may be run separately via the functions getLineages and getCurves.

From the original published work, we know that the starting cluster should correspond to HBCs and the end
clusters to MV, mOSN, and mSUS cells. Additionally, we know that GBCs should be at a junction before
the differentiation between MV and mOSN cells (Figure 8.2). The correspondance between the clusters we
found here and the original clusters is as follows.
table(data.frame(original = publishedClusters, ours = primaryClusterNamed(clustered)))
#> ours
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Figure 8.13: RSEC: MDS of the low-dimensional matrix W, where each point represents a cell and cells are
color-coded by RSEC clustering.

#> original -1 c1 c2 c3 c4 c5 c6 c7
#> -2 55 45 30 5 6 1 3 6
#> 1 44 46 0 0 0 0 0 0
#> 2 1 0 0 0 24 0 0 0
#> 3 2 2 1 0 49 0 0 0
#> 4 2 2 31 0 0 0 0 0
#> 5 44 47 2 0 0 0 0 0
#> 7 4 0 54 0 0 0 0 0
#> 8 26 1 0 0 0 0 0 0
#> 9 0 0 1 65 1 0 0 7
#> 10 1 0 0 0 0 25 0 0
#> 11 2 2 0 0 17 0 0 0
#> 12 0 0 0 35 0 0 0 0
#> 14 2 0 0 0 2 22 0 0
#> 15 1 0 0 0 1 0 30 0

Cluster name Description Color Correspondence
c1 HBC red original 1, 5
c2 mSUS blue original 4, 7
c3 mOSN green original 9, 12
c4 GBC orange original 2, 3, 11
c5 Immature Neuron purple original 10, 14
c6 MV brown original 15
c7 mOSN light blue original 9

To infer lineages and pseudotimes, we will apply Slingshot to the 4-dimensional MDS of the low-dimensional
matrix W. We found that the Slingshot results were robust to the number of dimensions k for the MDS (we
tried k from 2 to 5). Here, we use a semi-supervised version of Slingshot, where we only provide the identity
of the start cluster but not of the end clusters.
pseudoCe <- clustered[,!primaryClusterNamed(clustered) %in% c("-1")]
X <- reducedDim(pseudoCe,type="zinbwave")
mds <- cmdscale(dist(X), eig = TRUE, k = 4)
lineages <- slingshot(mds$points, clusterLabels = primaryClusterNamed(pseudoCe), start.clus = "c1")
#> Using full covariance matrix

Before discussing the simultaneous principal curves, we examine the global structure of the lineages by
plotting the MST on the clusters. This shows that our implementation has recovered the lineages found
in the published work (Figure 8.14). The slingshot package also includes functionality for 3-dimensional
visualization as in Figure 8.2, using the plot3d function from the package rgl.
colorCl<-convertClusterLegend(pseudoCe,whichCluster="primary",output="matrixColors")[,1]
pairs(lineages, type="lineages", col = colorCl)

Having found the global lineage structure, slingshot then constructed a set of smooth, branching curves in
order to infer the corresponding pseudotime variables. Simultaneous principal curves are constructed from
the individual cells along each lineage, rather than the cell clusters. During this iterative process, a cell may
even be reassigned to a different lineage if it is significantly closer to the corresopnding curve. This makes
slingshot less reliant on the original clustering and generally more stable. The final curves are shown in
Figure 14.2.
pairs(lineages, type="curves", col = colorCl)
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Figure 8.14: Slingshot: Cells color-coded by cluster in a 4-dimensional MDS space, with connecting lines
between cluster centers representing the inferred global lineage structure.
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Figure 8.15: Slingshot: Cells color-coded by cluster in a 4-dimensional MDS space, with smooth curves
representing each inferred lineage.
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lineages
#> class: SlingshotDataSet
#>
#> Samples Dimensions
#> 563 4
#>
#> lineages: 3
#> Lineage1: c1 c4 c5 c7 c3
#> Lineage2: c1 c4 c6
#> Lineage3: c1 c2
#>
#> curves: 3
#> Curve1: Length: 9.5238 Samples: 361.21
#> Curve2: Length: 7.8221 Samples: 234.14
#> Curve3: Length: 4.2828 Samples: 254.85

As an alternative, we could have incorporated the MDS results into the clustered object and applied
slingshot directly to it. Here, we need to specify that we want to use the MDS results, because slingshot
would otherwise use the first element of the reducedDims list (in this case, the 10-dimensional W matrix from
zinbwave).
reducedDim(pseudoCe, "MDS") <- mds$points
pseudoCe <- slingshot(pseudoCe, reducedDim = "MDS", start.clus = "c1")
#> Using full covariance matrix
pseudoCe
#> class: ClusterExperiment
#> dim: 1000 563
#> reducedDimNames: zinbwave MDS
#> filterStats: var
#> -----------
#> Primary cluster type: makeConsensus
#> Primary cluster label: makeConsensus
#> Table of clusters (of primary clustering):
#> c1 c2 c3 c4 c5 c6 c7
#> 145 119 105 100 48 33 13
#> Total number of clusterings: 14
#> No dendrogram present
#> -----------
#> Workflow progress:
#> clusterMany run? Yes
#> makeConsensus run? Yes
#> makeDendrogram run? No
#> mergeClusters run? No
colData(pseudoCe)
#> DataFrame with 563 rows and 23 columns
#> Experiment Batch publishedClusters NREADS
#> <factor> <factor> <numeric> <numeric>
#> OEP01_N706_S501 K5ERRY_UI_96HPT Y01 1 3313260
#> OEP01_N701_S501 K5ERRY_UI_96HPT Y01 1 2902430
#> OEP01_N707_S507 K5ERRY_UI_96HPT Y01 1 2307940
#> OEP01_N705_S501 K5ERRY_UI_96HPT Y01 1 3337400
#> OEP01_N702_S508 K5ERRY_UI_96HPT Y01 -2 525096
#> ... ... ... ... ...
#> OEL23_N704_S510 K5ERP63CKO_UI_14DPT P14 -2 2407440
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#> OEL23_N705_S502 K5ERP63CKO_UI_14DPT P14 -2 2308940
#> OEL23_N706_S502 K5ERP63CKO_UI_14DPT P14 12 2215640
#> OEL23_N704_S503 K5ERP63CKO_UI_14DPT P14 12 2673790
#> OEL23_N703_S502 K5ERP63CKO_UI_14DPT P14 7 2450320
#> NALIGNED RALIGN TOTAL_DUP PRIMER
#> <numeric> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 3167600 95.6035 47.9943 0.0154566
#> OEP01_N701_S501 2757790 95.0167 45.015 0.0182066
#> OEP01_N707_S507 2178350 94.3852 43.7832 0.0219196
#> OEP01_N705_S501 3183720 95.3952 43.2688 0.0183041
#> OEP01_N702_S508 484847 92.3349 18.806 0.0248804
#> ... ... ... ... ...
#> OEL23_N704_S510 2305060 95.7472 47.1489 0.0159111
#> OEL23_N705_S502 2203300 95.4244 62.5638 0.0195812
#> OEL23_N706_S502 2108490 95.1637 50.6643 0.0182207
#> OEL23_N704_S503 2568300 96.0546 60.5481 0.0155611
#> OEL23_N703_S502 2363500 96.4567 48.4164 0.0122704
#> PCT_RIBOSOMAL_BASES PCT_CODING_BASES PCT_UTR_BASES
#> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 2e-06 0.20013 0.230654
#> OEP01_N701_S501 0 0.182461 0.20181
#> OEP01_N707_S507 0 0.152627 0.207897
#> OEP01_N705_S501 2e-06 0.169514 0.207342
#> OEP01_N702_S508 0 0.130247 0.230848
#> ... ... ... ...
#> OEL23_N704_S510 0 0.287346 0.314104
#> OEL23_N705_S502 0 0.337264 0.297077
#> OEL23_N706_S502 7e-06 0.244333 0.262663
#> OEL23_N704_S503 0 0.343203 0.338217
#> OEL23_N703_S502 8e-06 0.259367 0.238239
#> PCT_INTRONIC_BASES PCT_INTERGENIC_BASES PCT_MRNA_BASES
#> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 0.404205 0.165009 0.430784
#> OEP01_N701_S501 0.465702 0.150027 0.384271
#> OEP01_N707_S507 0.511416 0.12806 0.360524
#> OEP01_N705_S501 0.457556 0.165586 0.376856
#> OEP01_N702_S508 0.477167 0.161738 0.361095
#> ... ... ... ...
#> OEL23_N704_S510 0.250658 0.147892 0.60145
#> OEL23_N705_S502 0.230214 0.135445 0.634341
#> OEL23_N706_S502 0.355899 0.137097 0.506997
#> OEL23_N704_S503 0.174696 0.143885 0.68142
#> OEL23_N703_S502 0.376091 0.126294 0.497606
#> MEDIAN_CV_COVERAGE MEDIAN_5PRIME_BIAS MEDIAN_3PRIME_BIAS
#> <numeric> <numeric> <numeric>
#> OEP01_N706_S501 0.843857 0.061028 0.521079
#> OEP01_N701_S501 0.91437 0.03335 0.373993
#> OEP01_N707_S507 0.955405 0.014606 0.49123
#> OEP01_N705_S501 0.81663 0.101798 0.525238
#> OEP01_N702_S508 1.13937 0 0.671565
#> ... ... ... ...
#> OEL23_N704_S510 0.698455 0.198224 0.419745
#> OEL23_N705_S502 0.830816 0.105091 0.398755
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#> OEL23_N706_S502 0.805627 0.103363 0.431862
#> OEL23_N704_S503 0.745201 0.118615 0.38422
#> OEL23_N703_S502 0.711685 0.196725 0.377926
#> CreER ERCC_reads slingClusters slingPseudotime_1
#> <numeric> <numeric> <character> <numeric>
#> OEP01_N706_S501 1 10516 c1 NA
#> OEP01_N701_S501 3022 9331 c1 1.17234765019331
#> OEP01_N707_S507 2329 7386 c1 1.05857338852636
#> OEP01_N705_S501 717 6387 c1 1.60463630065258
#> OEP01_N702_S508 6 1218 c1 1.15934111346639
#> ... ... ... ... ...
#> OEL23_N704_S510 659 0 c2 NA
#> OEL23_N705_S502 1552 0 c2 NA
#> OEL23_N706_S502 0 0 c3 8.14552572709918
#> OEL23_N704_S503 0 0 c3 8.53595122837615
#> OEL23_N703_S502 2222 0 c2 NA
#> slingPseudotime_2 slingPseudotime_3
#> <numeric> <numeric>
#> OEP01_N706_S501 NA 0.692789182245903
#> OEP01_N701_S501 1.16364108574816 1.14696263207989
#> OEP01_N707_S507 1.0611741023521 1.03755897807688
#> OEP01_N705_S501 1.61033070603652 1.4465916227885
#> OEP01_N702_S508 1.1674954947514 1.4206584204892
#> ... ... ...
#> OEL23_N704_S510 NA 2.01842841303396
#> OEL23_N705_S502 NA 3.75230631265741
#> OEL23_N706_S502 NA NA
#> OEL23_N704_S503 NA NA
#> OEL23_N703_S502 NA 2.74576551163381

The result of slingshot applied to a ClusterExperiment object is still of class ClusterExperiment.
Note that we did not specify a set of cluster labels, implying that slingshot should use the default
primaryClusterNamed vector.

In the workflow, we recover a reasonable ordering of the clusters using the largely unsupervised version
of slingshot. However, in some other cases, we have noticed that we need to give more guidance to the
algorithm to find the correct ordering. getLineages has the option for the user to provide known end
cluster(s), which represents a constraint on the MST requiring those clusters to be leaf nodes. Here is the
code to use slingshot in a supervised setting, where we know that clusters c3, c6 and c2 represent terminal
cell fates.
pseudoCeSup <- slingshot(pseudoCe, reducedDim = "MDS", start.clus = "c1",

end.clus = c("c3", "c6", "c2"))

8.8 Differential expression analysis along lineages

After assigning the cells to lineages and ordering them within lineages, we are interested in finding genes that
have non-constant expression patterns over pseudotime.

More formally, for each lineage, we use the robust local regression method loess to model in a flexible,
non-linear manner the relationship between a gene’s normalized expression measures and pseudotime. We
then can test the null hypothesis of no change over time for each gene using the gam package. We implement
this approach for the neuronal lineage and display the expression measures of the top 100 genes by p-value in
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Figure 8.16: DE: Heatmap of the normalized expression measures for the 100 most significantly DE genes for
the neuronal lineage, where rows correspond to genes and columns to cells ordered by pseudotime.

the heatmap of Figure 8.16.
t <- colData(pseudoCe)$slingPseudotime_1
y <- transformData(pseudoCe)
gam.pval <- apply(y,1,function(z){

d <- data.frame(z=z, t=t)
tmp <- gam(z ~ lo(t), data=d)
p <- summary(tmp)[4][[1]][1,5]
p

})

topgenes <- names(sort(gam.pval, decreasing = FALSE))[1:100]

pseudoCe1 <- pseudoCe[,!is.na(t)]
orderSamples(pseudoCe1)<-order(t[!is.na(t)])

plotHeatmap(pseudoCe1[topgenes,], clusterSamplesData = "orderSamplesValue", breaks = .99)



Chapter 9

210: Functional enrichment analysis
of high-throughput omics data

9.1 Instructor names and contact information

• Ludwig Geistlinger (Ludwig.Geistlinger@sph.cuny.edu)
• Levi Waldron

CUNY School of Public Health 55 W 125th St, New York, NY 10027

9.2 Workshop Description

This workshop gives an in-depth overview of existing methods for enrichment analysis of gene expression
data with regard to functional gene sets, pathways, and networks. The workshop will help participants
understand the distinctions between assumptions and hypotheses of existing methods as well as the differences
in objectives and interpretation of results. It will provide code and hands-on practice of all necessary steps
for differential expression analysis, gene set- and network-based enrichment analysis, and identification of
enriched genomic regions and regulatory elements, along with visualization and exploration of results.

9.2.1 Pre-requisites

• Basic knowledge of R syntax

• Familiarity with the SummarizedExperiment class

• Familiarity with the GenomicRanges class

• Familiarity with high-throughput gene expression data as obtained with microarrays and RNA-seq

• Familiarity with the concept of differential expression analysis (with e.g. limma, edgeR, DESeq2)

9.2.2 Workshop Participation

Execution of example code and hands-on practice

183
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9.2.3 R / Bioconductor packages used

• EnrichmentBrowser
• regioneR
• airway
• ALL
• hgu95av2.db
• BSgenome.Hsapiens.UCSC.hg19.masked

9.2.4 Time outline

Activity Time
Background 30m
Differential expression analysis 15m
Gene set analysis 30m
Gene network analysis 15m
Genomic region analysis 15m

9.3 Goals and objectives

Theory:

• Gene sets, pathways & regulatory networks
• Resources
• Gene set analysis vs. gene set enrichment analysis
• Underlying null: competitive vs. self-contained
• Generations: ora, fcs & topology-based

Practice:

• Data types: microarray vs. RNA-seq
• Differential expression analysis
• Defining gene sets according to GO and KEGG
• GO/KEGG overrepresentation analysis
• Functional class scoring & permutation testing
• Network-based enrichment analysis
• Genomic region enrichment analysis

9.4 Where does it all come from?

Test whether known biological functions or processes are over-represented (= enriched) in an experimentally-
derived gene list, e.g. a list of differentially expressed (DE) genes. See Goeman and Buehlmann, 2007 for a
critical review.

Example: Transcriptomic study, in which 12,671 genes have been tested for differential expression between
two sample conditions and 529 genes were found DE.

Among the DE genes, 28 are annotated to a specific functional gene set, which contains in total 170 genes.
This setup corresponds to a 2x2 contingency table,
deTable <-

matrix(c(28, 142, 501, 12000),

http://bioconductor.org/packages/EnrichmentBrowser
http://bioconductor.org/packages/regioneR
http://bioconductor.org/packages/airway
http://bioconductor.org/packages/ALL
http://bioconductor.org/packages/hgu95av2.db
http://bioconductor.org/packages/BSgenome.Hsapiens.UCSC.hg19.masked
https://doi.org/10.1093/bioinformatics/btm051
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nrow = 2,
dimnames = list(c("DE", "Not.DE"),

c("In.gene.set", "Not.in.gene.set")))
deTable
#> In.gene.set Not.in.gene.set
#> DE 28 501
#> Not.DE 142 12000

where the overlap of 28 genes can be assessed based on the hypergeometric distribution. This corresponds to
a one-sided version of Fisher’s exact test, yielding here a significant enrichment.
fisher.test(deTable, alternative = "greater")
#>
#> Fisher's Exact Test for Count Data
#>
#> data: deTable
#> p-value = 4.088e-10
#> alternative hypothesis: true odds ratio is greater than 1
#> 95 percent confidence interval:
#> 3.226736 Inf
#> sample estimates:
#> odds ratio
#> 4.721744

This basic principle is at the foundation of major public and commercial enrichment tools such as DAVID
and Pathway Studio.

Although gene set enrichment methods have been primarily developed and applied on transcriptomic data,
they have recently been modified, extended and applied also in other fields of genomic and biomedical research.
This includes novel approaches for functional enrichment analysis of proteomic and metabolomic data as well
as genomic regions and disease phenotypes, Lavallee and Yates, 2016, Chagoyen et al., 2016, McLean et al.,
2010, Ried et al., 2012.

9.5 Gene expression-based enrichment analysis

The first part of the workshop is largely based on the EnrichmentBrowser package, which implements an
analysis pipeline for high-throughput gene expression data as measured with microarrays and RNA-seq. In a
workflow-like manner, the package brings together a selection of established Bioconductor packages for gene
expression data analysis. It integrates a wide range of gene set enrichment analysis methods and facilitates
combination and exploration of results across methods.
suppressPackageStartupMessages(library(EnrichmentBrowser))

Further information can be found in the vignette and publication.

9.6 A primer on terminology, existing methods & statistical the-
ory

Gene sets, pathways & regulatory networks

Gene sets are simple lists of usually functionally related genes without further specification of relationships
between genes.

https://david.ncifcrf.gov/
https://www.pathwaystudio.com
https://doi.org/10.1002/0471250953.bi1328s53
https://doi.org/10.1007/978-1-4939-3572-7_20
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1002/gepi.21617
http://bioconductor.org/packages/EnrichmentBrowser
http://www.bioconductor.org/packages/release/bioc/vignettes/EnrichmentBrowser/inst/doc/EnrichmentBrowser.pdf
https://doi.org/10.1186/s12859-016-0884-1
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Pathways can be interpreted as specific gene sets, typically representing a group of genes that work together
in a biological process. Pathways are commonly divided in metabolic and signaling pathways. Metabolic
pathways such as glycolysis represent biochemical substrate conversions by specific enzymes. Signaling
pathways such as the MAPK signaling pathway describe signal transduction cascades from receptor proteins
to transcription factors, resulting in activation or inhibition of specific target genes.

Gene regulatory networks describe the interplay and effects of regulatory factors (such as transcription factors
and microRNAs) on the expression of their target genes.

Resources

GO and KEGG annotations are most frequently used for the enrichment analysis of functional gene sets.
Despite an increasing number of gene set and pathway databases, they are typically the first choice due to
their long-standing curation and availability for a wide range of species.

GO: The Gene Ontology (GO) consists of three major sub-ontologies that classify gene products according to
molecular function (MF), biological process (BP) and cellular component (CC). Each ontology consists of
GO terms that define MFs, BPs or CCs to which specific genes are annotated. The terms are organized in a
directed acyclic graph, where edges between the terms represent relationships of different types. They relate
the terms according to a parent-child scheme, i.e. parent terms denote more general entities, whereas child
terms represent more specific entities.

KEGG: The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of manually drawn pathway
maps representing molecular interaction and reaction networks. These pathways cover a wide range of
biochemical processes that can be divided in 7 broad categories: metabolism, genetic and environmental
information processing, cellular processes, organismal systems, human diseases, and drug development.
Metabolism and drug development pathways differ from pathways of the other 5 categories by illustrating
reactions between chemical compounds. Pathways of the other 5 categories illustrate molecular interactions
between genes and gene products.

Gene set analysis vs. gene set enrichment analysis

The two predominantly used enrichment methods are:

• Overrepresentation analysis (ORA), testing whether a gene set contains disproportional many genes of
significant expression change, based on the procedure outlined in the first section

• Gene set enrichment analysis (GSEA), testing whether genes of a gene set accumulate at the top or
bottom of the full gene vector ordered by direction and magnitude of expression change Subramanian
et al., 2005

However, the term gene set enrichment analysis nowadays subsumes a general strategy implemented by a
wide range of methods Huang et al., 2009. Those methods have in common the same goal, although approach
and statistical model can vary substantially Goeman and Buehlmann, 2007, Khatri et al., 2012.

To better distinguish from the specific method, some authors use the term gene set analysis to denote the
general strategy. However, there is also a specific method from Efron and Tibshirani, 2007 of this name.

Underlying null: competitive vs. self-contained

Goeman and Buehlmann, 2007 classified existing enrichment methods into competitive and self-contained
based on the underlying null hypothesis.

• Competitive null hypothesis: the genes in the set of interest are at most as often DE as the genes not in
the set,

• Self-contained null hypothesis: no genes in the set of interest are DE.

Although the authors argue that a self-contained null is closer to the actual question of interest, the vast
majority of enrichment methods is competitive.

Goeman and Buehlmann further raise several critical issues concerning the 2x2 ORA:

• rather arbitrary classification of genes in DE / not DE

http://www.geneontology.org
http://www.genome.jp/kegg
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/bioinformatics/btm051
https://doi.org/10.1371/journal.pcbi.1002375
https://doi.org/10.1214/07-AOAS101
https://doi.org/10.1093/bioinformatics/btm051
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• based on gene sampling, although sampling of subjects is appropriate
• unrealistic independence assumption between genes, resulting in highly anti-conservative p-values

With regard to these statistical concerns, GSEA is considered superior:

• takes all measured genes into account
• subject sampling via permutation of class labels

• the incorporated permutation procedure implicitly accounts for correlations between genes

However, the simplicity and general applicability of ORA is unmet by subsequent methods improving on
these issues. For instance, GSEA requires the expression data as input, which is not available for gene lists
derived from other experiment types. On the other hand, the involved sample permutation procedure has
been proven inaccurate and time-consuming Efron and Tibshirani, 2007, Phipson and Smyth, 2010, Larson
and Owen, 2015.

Generations: ora, fcs & topology-based

Khatri et al., 2012 have taken a slightly different approach by classifying methods along the timeline of
development into three generations:

1. Generation: ORA methods based on the 2x2 contingency table test,
2. Generation: functional class scoring (FCS) methods such as GSEA, which compute gene set (= functional

class) scores by summarizing per-gene DE statistics,
3. Generation: topology-based methods, explicitly taking into account interactions between genes as

defined in signaling pathways and gene regulatory networks (Geistlinger et al., 2011 for an example).

Although topology-based (also: network-based) methods appear to be most realistic, their straightforward
application can be impaired by features that are not-detectable on the transcriptional level (such as protein-
protein interactions) and insufficient network knowledge Geistlinger et al., 2013, Bayerlova et al., 2015.

Given the individual benefits and limitations of existing methods, cautious interpretation of results is required
to derive valid conclusions. Whereas no single method is best suited for all application scenarios, applying
multiple methods can be beneficial. This has been shown to filter out spurious hits of individual methods,
thereby reducing the outcome to gene sets accumulating evidence from different methods Geistlinger et al.,
2016, Alhamdoosh et al., 2017.

9.7 Data types

Although RNA-seq (read count data) has become the de facto standard for transcriptomic profiling, it is
important to know that many methods for differential expression and gene set enrichment analysis have been
originally developed for microarray data (intensity measurements).

However, differences in data distribution assumptions (microarray: quasi-normal, RNA-seq: negative binomial)
made adaptations in differential expression analysis and, to some extent, also in gene set enrichment analysis
necessary.

Thus, we consider two example datasets - a microarray and a RNA-seq dataset, and discuss similarities and
differences of the respective analysis steps.

For microarray data, we consider expression measurements of patients with acute lymphoblastic leukemia
Chiaretti et al., 2004. A frequent chromosomal defect found among these patients is a translocation, in which
parts of chromosome 9 and 22 swap places. This results in the oncogenic fusion gene BCR/ABL created by
positioning the ABL1 gene on chromosome 9 to a part of the BCR gene on chromosome 22.

We load the ALL dataset
library(ALL)
data(ALL)

https://doi.org/10.1214/07-AOAS101
https://doi.org/10.2202/1544-6115.1585
https://doi.org/10.1186/s12859-015-0571-7
https://doi.org/10.1186/s12859-015-0571-7
https://doi.org/10.1371/journal.pcbi.1002375
https://doi.org/10.1093/bioinformatics/btr228
https://doi.org/10.1093/nar/gkt631
https://doi.org/10.1186/s12859-015-0751-5
https://doi.org/10.1186/s12859-016-0884-1
https://doi.org/10.1186/s12859-016-0884-1
https://doi.org/10.1093/bioinformatics/btw623
https://doi.org/10.1182/blood-2003-09-3243
http://bioconductor.org/packages/ALL
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and select B-cell ALL patients with and without the BCR/ABL fusion, as described previously Gentleman et
al., 2005.
ind.bs <- grep("^B", ALL$BT)
ind.mut <- which(ALL$mol.biol %in% c("BCR/ABL", "NEG"))
sset <- intersect(ind.bs, ind.mut)
all.eset <- ALL[, sset]

We can now access the expression values, which are intensity measurements on a log-scale for 12,625 probes
(rows) across 79 patients (columns).
dim(all.eset)
#> Features Samples
#> 12625 79
exprs(all.eset)[1:4,1:4]
#> 01005 01010 03002 04007
#> 1000_at 7.597323 7.479445 7.567593 7.905312
#> 1001_at 5.046194 4.932537 4.799294 4.844565
#> 1002_f_at 3.900466 4.208155 3.886169 3.416923
#> 1003_s_at 5.903856 6.169024 5.860459 5.687997

As we often have more than one probe per gene, we compute gene expression values as the average of the
corresponding probe values.
allSE <- probe2gene(all.eset)
#> Loading required package: hgu95av2.db
#> Loading required package: AnnotationDbi
#> Loading required package: org.Hs.eg.db
#>
#>
head(names(allSE))
#> [1] "5595" "7075" "1557" "643" "1843" "4319"

For RNA-seq data, we consider transcriptome profiles of four primary human airway smooth muscle cell lines
in two conditions: control and treatment with dexamethasone Himes et al., 2014.

We load the airway dataset
library(airway)
data(airway)

For further analysis, we only keep genes that are annotated to an ENSEMBL gene ID.
airSE <- airway[grep("^ENSG", names(airway)), ]
dim(airSE)
#> [1] 63677 8

assay(airSE)[1:4,1:4]
#> SRR1039508 SRR1039509 SRR1039512 SRR1039513
#> ENSG00000000003 679 448 873 408
#> ENSG00000000005 0 0 0 0
#> ENSG00000000419 467 515 621 365
#> ENSG00000000457 260 211 263 164

https://www.bioconductor.org/help/publications/books/bioinformatics-and-computational-biology-solutions
https://www.bioconductor.org/help/publications/books/bioinformatics-and-computational-biology-solutions
https://doi.org/10.1371/journal.pone.0099625
http://bioconductor.org/packages/airway
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9.8 Differential expression analysis

Normalization of high-throughput expression data is essential to make results within and between experiments
comparable. Microarray (intensity measurements) and RNA-seq (read counts) data typically show distinct
features that need to be normalized for. As this is beyond the scope of this workshop, we refer to limma for mi-
croarray normalization and EDASeq for RNA-seq normalization. See also EnrichmentBrowser::normalize,
which wraps commonly used functionality for normalization.

The EnrichmentBrowser incorporates established functionality from the limma package for differential
expression analysis. This involves the voom transformation when applied to RNA-seq data. Alternatively,
differential expression analysis for RNA-seq data can also be carried out based on the negative binomial
distribution with edgeR and DESeq2.

This can be performed using the function EnrichmentBrowser::deAna and assumes some standardized
variable names:

• GROUP defines the sample groups being contrasted,
• BLOCK defines paired samples or sample blocks, as e.g. for batch effects.

For more information on experimental design, see the limma user’s guide, chapter 9.

For the ALL dataset, the GROUP variable indicates whether the BCR-ABL gene fusion is present (1) or
not (0).
allSE$GROUP <- ifelse(allSE$mol.biol == "BCR/ABL", 1, 0)
table(allSE$GROUP)
#>
#> 0 1
#> 42 37

For the airway dataset, it indicates whether the cell lines have been treated with dexamethasone (1) or not
(0).
airSE$GROUP <- ifelse(colData(airway)$dex == "trt", 1, 0)
table(airSE$GROUP)
#>
#> 0 1
#> 4 4

Paired samples, or in general sample batches/blocks, can be defined via a BLOCK column in the colData slot.
For the airway dataset, the sample blocks correspond to the four different cell lines.
airSE$BLOCK <- airway$cell
table(airSE$BLOCK)
#>
#> N052611 N061011 N080611 N61311
#> 2 2 2 2

For microarray data, the EnrichmentBrowser::deAna function carries out differential expression analysis
based on functionality from the limma package. Resulting log2 fold changes and t-test derived p-values for
each gene are appended to the rowData slot.
allSE <- deAna(allSE)
rowData(allSE, use.names=TRUE)
#> DataFrame with 9010 rows and 3 columns
#> FC ADJ.PVAL limma.STAT
#> <numeric> <numeric> <numeric>
#> 5595 0.0429698599842595 0.899246817310775 0.734679177472013
#> 7075 0.0320835027449625 0.949001013642671 0.4546910829318

http://bioconductor.org/packages/limma
http://bioconductor.org/packages/EDASeq
http://bioconductor.org/packages/limma
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/DESeq2
https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf
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#> 1557 -0.0439401425131442 0.818330132411339 -1.06578261967549
#> 643 -0.0277543539240438 0.929148567589577 -0.567394394416651
#> 1843 -0.427302534257363 0.566034751753148 -1.75050227190017
#> ... ... ... ...
#> 6300 -0.026651766164237 0.922828548631225 -0.608608859328046
#> 7297 -0.124257678078831 0.804578494190681 -1.11279493778184
#> 2246 0.0522428857778935 0.748021044717352 1.27408420746691
#> 7850 -0.00908229596065303 0.991826450687159 -0.102406339091096
#> 1593 -0.00747713820802068 0.989532971314233 -0.145650256847251

Nominal p-values are already corrected for multiple testing (ADJ.PVAL) using the method from Benjamini
and Hochberg implemented in stats::p.adjust.

For RNA-seq data, the deAna function can be used to carry out differential expression analysis between the
two groups either based on functionality from limma (that includes the voom transformation), or alternatively,
the frequently used edgeR or DESeq2 package. Here, we use the analysis based on edgeR.
airSE <- deAna(airSE, de.method="edgeR")
#> Excluding 50740 genes not satisfying min.cpm threshold

rowData(airSE, use.names=TRUE)
#> DataFrame with 12937 rows and 3 columns
#> FC ADJ.PVAL
#> <numeric> <numeric>
#> ENSG00000000003 -0.404945626610932 0.00213458295385943
#> ENSG00000000419 0.182985434777532 0.0915691945172958
#> ENSG00000000457 0.0143477674070903 0.922279475399443
#> ENSG00000000460 -0.141173372957311 0.619013213521635
#> ENSG00000000971 0.402240426474172 0.00403820532305827
#> ... ... ...
#> ENSG00000273270 -0.129793853337261 0.495892935815041
#> ENSG00000273290 0.505580471641003 0.00639218387702899
#> ENSG00000273311 0.00161557580855148 0.996356136956657
#> ENSG00000273329 -0.222817127090519 0.388294594068803
#> ENSG00000273344 0.0151704005097403 0.962777106053257
#> edgeR.STAT
#> <numeric>
#> ENSG00000000003 35.8743710016552
#> ENSG00000000419 5.90960619951737
#> ENSG00000000457 0.0233923316990905
#> ENSG00000000460 0.492929955080604
#> ENSG00000000971 27.8509962017407
#> ... ...
#> ENSG00000273270 0.901598359265205
#> ENSG00000273290 23.0905678847871
#> ENSG00000273311 8.04821152029429e-05
#> ENSG00000273329 1.42723325850597
#> ENSG00000273344 0.00543503273765429

Exercise: Compare the number of differentially expressed genes as obtained on the airSE with limma/voom,
edgeR, and DESeq2.
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9.9 Gene sets

We are now interested in whether pre-defined sets of genes that are known to work together, e.g. as defined
in the Gene Ontology or the KEGG pathway annotation, are coordinately differentially expressed.

The function getGenesets can be used to download gene sets from databases such as GO and KEGG. Here,
we use the function to download all KEGG pathways for a chosen organism (here: Homo sapiens) as gene
sets.
kegg.gs <- getGenesets(org="hsa", db="kegg")

Analogously, the function getGenesets can be used to retrieve GO terms of a selected ontology (here:
biological process, BP) as defined in the GO.db annotation package.
go.gs <- getGenesets(org="hsa", db="go", go.onto="BP", go.mode="GO.db")
#>

If provided a file, the function getGenesets parses user-defined gene sets from GMT file format. Here, we
use this functionality for reading a list of already downloaded KEGG gene sets for Homo sapiens containing
NCBI Entrez Gene IDs.
data.dir <- system.file("extdata", package="EnrichmentBrowser")
gmt.file <- file.path(data.dir, "hsa_kegg_gs.gmt")
hsa.gs <- getGenesets(gmt.file)
hsa.gs[1:2]
#> $hsa05416_Viral_myocarditis
#> [1] "100509457" "101060835" "1525" "1604" "1605"
#> [6] "1756" "1981" "1982" "25" "2534"
#> [11] "27" "3105" "3106" "3107" "3108"
#> [16] "3109" "3111" "3112" "3113" "3115"
#> [21] "3117" "3118" "3119" "3122" "3123"
#> [26] "3125" "3126" "3127" "3133" "3134"
#> [31] "3135" "3383" "3683" "3689" "3908"
#> [36] "4624" "4625" "54205" "5551" "5879"
#> [41] "5880" "5881" "595" "60" "637"
#> [46] "6442" "6443" "6444" "6445" "71"
#> [51] "836" "841" "842" "857" "8672"
#> [56] "940" "941" "942" "958" "959"
#>
#> $`hsa04622_RIG-I-like_receptor_signaling_pathway`
#> [1] "10010" "1147" "1432" "1540" "1654" "23586" "26007"
#> [8] "29110" "338376" "340061" "3439" "3440" "3441" "3442"
#> [15] "3443" "3444" "3445" "3446" "3447" "3448" "3449"
#> [22] "3451" "3452" "3456" "3467" "3551" "3576" "3592"
#> [29] "3593" "3627" "3661" "3665" "4214" "4790" "4792"
#> [36] "4793" "5300" "54941" "55593" "5599" "5600" "5601"
#> [43] "5602" "5603" "56832" "57506" "5970" "6300" "64135"
#> [50] "64343" "6885" "7124" "7186" "7187" "7189" "7706"
#> [57] "79132" "79671" "80143" "841" "843" "8517" "8717"
#> [64] "8737" "8772" "9140" "9474" "9636" "9641" "9755"

hsa.gs[1:2]
#> $hsa05416_Viral_myocarditis
#> [1] "100509457" "101060835" "1525" "1604" "1605"
#> [6] "1756" "1981" "1982" "25" "2534"
#> [11] "27" "3105" "3106" "3107" "3108"

http://www.geneontology.org
http://www.genome.jp/kegg
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#> [16] "3109" "3111" "3112" "3113" "3115"
#> [21] "3117" "3118" "3119" "3122" "3123"
#> [26] "3125" "3126" "3127" "3133" "3134"
#> [31] "3135" "3383" "3683" "3689" "3908"
#> [36] "4624" "4625" "54205" "5551" "5879"
#> [41] "5880" "5881" "595" "60" "637"
#> [46] "6442" "6443" "6444" "6445" "71"
#> [51] "836" "841" "842" "857" "8672"
#> [56] "940" "941" "942" "958" "959"
#>
#> $`hsa04622_RIG-I-like_receptor_signaling_pathway`
#> [1] "10010" "1147" "1432" "1540" "1654" "23586" "26007"
#> [8] "29110" "338376" "340061" "3439" "3440" "3441" "3442"
#> [15] "3443" "3444" "3445" "3446" "3447" "3448" "3449"
#> [22] "3451" "3452" "3456" "3467" "3551" "3576" "3592"
#> [29] "3593" "3627" "3661" "3665" "4214" "4790" "4792"
#> [36] "4793" "5300" "54941" "55593" "5599" "5600" "5601"
#> [43] "5602" "5603" "56832" "57506" "5970" "6300" "64135"
#> [50] "64343" "6885" "7124" "7186" "7187" "7189" "7706"
#> [57] "79132" "79671" "80143" "841" "843" "8517" "8717"
#> [64] "8737" "8772" "9140" "9474" "9636" "9641" "9755"

See also the MSigDb for additional gene set collections.

9.10 GO/KEGG overrepresentation analysis

A variety of gene set analysis methods have been proposed Khatri et al., 2012. The most basic, yet frequently
used, method is the over-representation analysis (ORA) with gene sets defined according to GO or KEGG.
As outlined in the first section, ORA tests the overlap between DE genes (typically DE p-value < 0.05) and
genes in a gene set based on the hypergeometric distribution. Here, we choose a significance level α = 0.2 for
demonstration.
ora.all <- sbea(method="ora", se=allSE, gs=hsa.gs, perm=0, alpha=0.2)
gsRanking(ora.all)
#> DataFrame with 7 rows and 4 columns
#> GENE.SET
#> <character>
#> 1 hsa05202_Transcriptional_misregulation_in_cancer
#> 2 hsa05412_Arrhythmogenic_right_ventricular_cardiomyopathy_(ARVC)
#> 3 hsa05144_Malaria
#> 4 hsa04670_Leukocyte_transendothelial_migration
#> 5 hsa05100_Bacterial_invasion_of_epithelial_cells
#> 6 hsa04622_RIG-I-like_receptor_signaling_pathway
#> 7 hsa05130_Pathogenic_Escherichia_coli_infection
#> NR.GENES NR.SIG.GENES P.VALUE
#> <numeric> <numeric> <numeric>
#> 1 153 17 0.0351
#> 2 63 8 0.0717
#> 3 45 6 0.0932
#> 4 94 10 0.122
#> 5 64 7 0.162
#> 6 54 6 0.178
#> 7 43 5 0.184

http://software.broadinstitute.org/gsea/msigdb
https://doi.org/10.1371/journal.pcbi.1002375
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Such a ranked list is the standard output of most existing enrichment tools. Using the eaBrowse function
creates a HTML summary from which each gene set can be inspected in more detail.
eaBrowse(ora.all)
#> Creating gene report ...
#>
#> Creating set view ...
#> Creating kegg view ...
#> Loading required package: pathview

The resulting summary page includes for each significant gene set

• a gene report, which lists all genes of a set along with fold change and DE p-value (click on links in
column NR.GENES),

• interactive overview plots such as heatmap and volcano plot (column SET.VIEW, supports mouse-over
and click-on),

• for KEGG pathways: highlighting of differentially expressed genes on the pathway maps (column
PATH.VIEW, supports mouse-over and click-on).

As ORA works on the list of DE genes and not the actual expression values, it can be straightforward applied
to RNA-seq data. However, as the gene sets here contain NCBI Entrez gene IDs and the airway dataset
contains ENSEMBL gene ids, we first map the airway dataset to Entrez IDs.
airSE <- idMap(airSE, org="hsa", from="ENSEMBL", to="ENTREZID")
#> 'select()' returned 1:many mapping between keys and columns
#> Excluded 1133 genes without a corresponding to.ID
#> Encountered 8 from.IDs with >1 corresponding to.ID (a single to.ID was chosen for each of them)

ora.air <- sbea(method="ora", se=airSE, gs=hsa.gs, perm=0)
gsRanking(ora.air)
#> DataFrame with 9 rows and 4 columns
#> GENE.SET
#> <character>
#> 1 hsa05206_MicroRNAs_in_cancer
#> 2 hsa05218_Melanoma
#> 3 hsa05214_Glioma
#> 4 hsa05131_Shigellosis
#> 5 hsa05410_Hypertrophic_cardiomyopathy_(HCM)
#> 6 hsa04670_Leukocyte_transendothelial_migration
#> 7 hsa05100_Bacterial_invasion_of_epithelial_cells
#> 8 hsa04514_Cell_adhesion_molecules_(CAMs)
#> 9 hsa05412_Arrhythmogenic_right_ventricular_cardiomyopathy_(ARVC)
#> NR.GENES NR.SIG.GENES P.VALUE
#> <numeric> <numeric> <numeric>
#> 1 118 68 0.000508
#> 2 50 33 0.000662
#> 3 48 30 0.00419
#> 4 53 31 0.0142
#> 5 53 31 0.0142
#> 6 62 34 0.0353
#> 7 60 33 0.036
#> 8 60 33 0.036
#> 9 48 27 0.0402

Note #1: Young et al., 2010, have reported biased results for ORA on RNA-seq data due to over-detection

https://doi.org/10.1186/gb-2010-11-2-r14
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of differential expression for long and highly expressed transcripts. The goseq package and limma::goana
implement possibilities to adjust ORA for gene length and abundance bias.

Note #2: Independent of the expression data type under investigation, overlap between gene sets can result
in redundant findings. This is well-documented for GO (parent-child structure, Rhee et al., 2008) and KEGG
(pathway overlap/crosstalk, Donato et al., 2013). The topGO package (explicitly designed for GO) and
mgsa (applicable to arbitrary gene set definitions) implement modifications of ORA to account for such
redundancies.

9.11 Functional class scoring & permutation testing

A major limitation of ORA is that it restricts analysis to DE genes, excluding genes not satisfying the chosen
significance threshold (typically the vast majority).

This is resolved by gene set enrichment analysis (GSEA), which scores the tendency of gene set members to
appear rather at the top or bottom of the ranked list of all measured genes Subramanian et al., 2005. The
statistical significance of the enrichment score (ES) of a gene set is assessed via sample permutation, i.e. (1)
sample labels (= group assignment) are shuffled, (2) per-gene DE statistics are recomputed, and (3) the
enrichment score is recomputed. Repeating this procedure many times allows to determine the empirical
distribution of the enrichment score and to compare the observed enrichment score against it. Here, we carry
out GSEA with 1000 permutations.
gsea.all <- sbea(method="gsea", se=allSE, gs=hsa.gs, perm=1000)
#> Permutations: 1 -- 100
#> Permutations: 101 -- 200
#> Permutations: 201 -- 300
#> Permutations: 301 -- 400
#> Permutations: 401 -- 500
#> Permutations: 501 -- 600
#> Permutations: 601 -- 700
#> Permutations: 701 -- 800
#> Permutations: 801 -- 900
#> Permutations: 901 -- 1000
#> Processing ...

gsRanking(gsea.all)
#> DataFrame with 20 rows and 4 columns
#> GENE.SET
#> <character>
#> 1 hsa05412_Arrhythmogenic_right_ventricular_cardiomyopathy_(ARVC)
#> 2 hsa04670_Leukocyte_transendothelial_migration
#> 3 hsa04520_Adherens_junction
#> 4 hsa04390_Hippo_signaling_pathway
#> 5 hsa05323_Rheumatoid_arthritis
#> ... ...
#> 16 hsa05217_Basal_cell_carcinoma
#> 17 hsa04210_Apoptosis
#> 18 hsa05130_Pathogenic_Escherichia_coli_infection
#> 19 hsa05410_Hypertrophic_cardiomyopathy_(HCM)
#> 20 hsa05131_Shigellosis
#> ES NES P.VALUE
#> <numeric> <numeric> <numeric>
#> 1 0.511 1.92 0
#> 2 0.499 1.78 0

http://bioconductor.org/packages/goseq
https://doi.org/10.1038/nrg2363
https://doi.org/10.1101/gr.153551.112
http://bioconductor.org/packages/topGO
http://bioconductor.org/packages/mgsa
https://doi.org/10.1073/pnas.0506580102
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#> 3 0.488 1.74 0
#> 4 0.459 1.67 0
#> 5 0.574 1.66 0.0019
#> ... ... ... ...
#> 16 0.559 1.64 0.0248
#> 17 0.424 1.44 0.0336
#> 18 0.486 1.54 0.0347
#> 19 0.386 1.45 0.0406
#> 20 0.479 1.49 0.0436

As GSEA’s permutation procedure involves re-computation of per-gene DE statistics, adaptations are necessary
for RNA-seq. The EnrichmentBrowser implements an accordingly adapted version of GSEA, which allows
incorporation of limma/voom, edgeR, or DESeq2 for repeated DE re-computation within GSEA. However,
this is computationally intensive (for limma/voom the least, for DESeq2 the most). Note the relatively long
running times for only 100 permutations having used edgeR for DE analysis.
gsea.air <- sbea(method="gsea", se=airSE, gs=hsa.gs, perm=100)
#> 100 permutations completed

While it might be in some cases necessary to apply permutation-based GSEA for RNA-seq data, there are
also alternatives avoiding permutation. Among them is ROtAtion gene Set Testing (ROAST), which uses
rotation instead of permutation Wu et al., 2010.
roast.air <- sbea(method="roast", se=airSE, gs=hsa.gs)
gsRanking(roast.air)
#> DataFrame with 27 rows and 4 columns
#> GENE.SET NR.GENES DIR
#> <character> <numeric> <numeric>
#> 1 hsa05410_Hypertrophic_cardiomyopathy_(HCM) 53 1
#> 2 hsa05134_Legionellosis 35 1
#> 3 hsa05416_Viral_myocarditis 33 1
#> 4 hsa00790_Folate_biosynthesis 11 1
#> 5 hsa03030_DNA_replication 33 -1
#> ... ... ... ...
#> 23 hsa04150_mTOR_signaling_pathway 50 1
#> 24 hsa04350_TGF-beta_signaling_pathway 63 1
#> 25 hsa00561_Glycerolipid_metabolism 39 1
#> 26 hsa04621_NOD-like_receptor_signaling_pathway 40 -1
#> 27 hsa04514_Cell_adhesion_molecules_(CAMs) 60 -1
#> P.VALUE
#> <numeric>
#> 1 0.001
#> 2 0.001
#> 3 0.001
#> 4 0.001
#> 5 0.001
#> ... ...
#> 23 0.027
#> 24 0.029
#> 25 0.032
#> 26 0.033
#> 27 0.035

A selection of additional methods is also available:

https://doi.org/10.1093/bioinformatics/btq401
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sbeaMethods()
#> [1] "ora" "safe" "gsea" "gsa" "padog"
#> [6] "globaltest" "roast" "camera" "gsva" "samgs"
#> [11] "ebm" "mgsa"

Exercise: Carry out a GO overrepresentation analysis for the allSE and airSE. How many significant gene
sets do you observe in each case?

9.12 Network-based enrichment analysis

Having found gene sets that show enrichment for differential expression, we are now interested whether these
findings can be supported by known regulatory interactions.

For example, we want to know whether transcription factors and their target genes are expressed in accordance
to the connecting regulations (activation/inhibition). Such information is usually given in a gene regulatory
network derived from specific experiments or compiled from the literature (Geistlinger et al., 2013 for an
example).

There are well-studied processes and organisms for which comprehensive and well-annotated regulatory
networks are available, e.g. the RegulonDB for E. coli and Yeastract for S. cerevisiae.

However, there are also cases where such a network is missing or at least incomplete. A basic workaround is
to compile a network from regulations in pathway databases such as KEGG.
hsa.grn <- compileGRN(org="hsa", db="kegg")
head(hsa.grn)
#> FROM TO TYPE
#> [1,] "10000" "100132074" "-"
#> [2,] "10000" "1026" "-"
#> [3,] "10000" "1026" "+"
#> [4,] "10000" "1027" "-"
#> [5,] "10000" "10488" "+"
#> [6,] "10000" "107" "+"

Signaling pathway impact analysis (SPIA) is a network-based enrichment analysis method, which is explicitly
designed for KEGG signaling pathways Tarca et al., 2009. The method evaluates whether expression changes
are propagated across the pathway topology in combination with ORA.
spia.all <- nbea(method="spia", se=allSE, gs=hsa.gs, grn=hsa.grn, alpha=0.2)
#>
#> Done pathway 1 : RNA transport..
#> Done pathway 2 : RNA degradation..
#> Done pathway 3 : PPAR signaling pathway..
#> Done pathway 4 : Fanconi anemia pathway..
#> Done pathway 5 : MAPK signaling pathway..
#> Done pathway 6 : ErbB signaling pathway..
#> Done pathway 7 : Calcium signaling pathway..
#> Done pathway 8 : Cytokine-cytokine receptor int..
#> Done pathway 9 : Chemokine signaling pathway..
#> Done pathway 10 : NF-kappa B signaling pathway..
#> Done pathway 11 : Phosphatidylinositol signaling..
#> Done pathway 12 : Neuroactive ligand-receptor in..
#> Done pathway 13 : Cell cycle..
#> Done pathway 14 : Oocyte meiosis..
#> Done pathway 15 : p53 signaling pathway..

https://doi.org/10.1093/nar/gkt631
http://regulondb.ccg.unam.mx
http://www.yeastract.com
https://doi.org/%2010.1093/bioinformatics/btn577
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#> Done pathway 16 : Sulfur relay system..
#> Done pathway 17 : SNARE interactions in vesicula..
#> Done pathway 18 : Regulation of autophagy..
#> Done pathway 19 : Protein processing in endoplas..
#> Done pathway 20 : Lysosome..
#> Done pathway 21 : mTOR signaling pathway..
#> Done pathway 22 : Apoptosis..
#> Done pathway 23 : Vascular smooth muscle contrac..
#> Done pathway 24 : Wnt signaling pathway..
#> Done pathway 25 : Dorso-ventral axis formation..
#> Done pathway 26 : Notch signaling pathway..
#> Done pathway 27 : Hedgehog signaling pathway..
#> Done pathway 28 : TGF-beta signaling pathway..
#> Done pathway 29 : Axon guidance..
#> Done pathway 30 : VEGF signaling pathway..
#> Done pathway 31 : Osteoclast differentiation..
#> Done pathway 32 : Focal adhesion..
#> Done pathway 33 : ECM-receptor interaction..
#> Done pathway 34 : Cell adhesion molecules (CAMs)..
#> Done pathway 35 : Adherens junction..
#> Done pathway 36 : Tight junction..
#> Done pathway 37 : Gap junction..
#> Done pathway 38 : Complement and coagulation cas..
#> Done pathway 39 : Antigen processing and present..
#> Done pathway 40 : Toll-like receptor signaling p..
#> Done pathway 41 : NOD-like receptor signaling pa..
#> Done pathway 42 : RIG-I-like receptor signaling ..
#> Done pathway 43 : Cytosolic DNA-sensing pathway..
#> Done pathway 44 : Jak-STAT signaling pathway..
#> Done pathway 45 : Natural killer cell mediated c..
#> Done pathway 46 : T cell receptor signaling path..
#> Done pathway 47 : B cell receptor signaling path..
#> Done pathway 48 : Fc epsilon RI signaling pathwa..
#> Done pathway 49 : Fc gamma R-mediated phagocytos..
#> Done pathway 50 : Leukocyte transendothelial mig..
#> Done pathway 51 : Intestinal immune network for ..
#> Done pathway 52 : Circadian rhythm - mammal..
#> Done pathway 53 : Long-term potentiation..
#> Done pathway 54 : Neurotrophin signaling pathway..
#> Done pathway 55 : Retrograde endocannabinoid sig..
#> Done pathway 56 : Glutamatergic synapse..
#> Done pathway 57 : Cholinergic synapse..
#> Done pathway 58 : Serotonergic synapse..
#> Done pathway 59 : GABAergic synapse..
#> Done pathway 60 : Dopaminergic synapse..
#> Done pathway 61 : Long-term depression..
#> Done pathway 62 : Olfactory transduction..
#> Done pathway 63 : Taste transduction..
#> Done pathway 64 : Phototransduction..
#> Done pathway 65 : Regulation of actin cytoskelet..
#> Done pathway 66 : Insulin signaling pathway..
#> Done pathway 67 : GnRH signaling pathway..
#> Done pathway 68 : Progesterone-mediated oocyte m..
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#> Done pathway 69 : Melanogenesis..
#> Done pathway 70 : Adipocytokine signaling pathwa..
#> Done pathway 71 : Type II diabetes mellitus..
#> Done pathway 72 : Type I diabetes mellitus..
#> Done pathway 73 : Maturity onset diabetes of the..
#> Done pathway 74 : Aldosterone-regulated sodium r..
#> Done pathway 75 : Endocrine and other factor-reg..
#> Done pathway 76 : Vasopressin-regulated water re..
#> Done pathway 77 : Salivary secretion..
#> Done pathway 78 : Gastric acid secretion..
#> Done pathway 79 : Pancreatic secretion..
#> Done pathway 80 : Carbohydrate digestion and abs..
#> Done pathway 81 : Bile secretion..
#> Done pathway 82 : Mineral absorption..
#> Done pathway 83 : Alzheimer's disease..
#> Done pathway 84 : Parkinson's disease..
#> Done pathway 85 : Amyotrophic lateral sclerosis ..
#> Done pathway 86 : Huntington's disease..
#> Done pathway 87 : Prion diseases..
#> Done pathway 88 : Cocaine addiction..
#> Done pathway 89 : Amphetamine addiction..
#> Done pathway 90 : Morphine addiction..
#> Done pathway 91 : Alcoholism..
#> Done pathway 92 : Bacterial invasion of epitheli..
#> Done pathway 93 : Vibrio cholerae infection..
#> Done pathway 94 : Epithelial cell signaling in H..
#> Done pathway 95 : Pathogenic Escherichia coli in..
#> Done pathway 96 : Shigellosis..
#> Done pathway 97 : Salmonella infection..
#> Done pathway 98 : Pertussis..
#> Done pathway 99 : Legionellosis..
#> Done pathway 100 : Leishmaniasis..
#> Done pathway 101 : Chagas disease (American trypa..
#> Done pathway 102 : African trypanosomiasis..
#> Done pathway 103 : Malaria..
#> Done pathway 104 : Toxoplasmosis..
#> Done pathway 105 : Amoebiasis..
#> Done pathway 106 : Staphylococcus aureus infectio..
#> Done pathway 107 : Tuberculosis..
#> Done pathway 108 : Hepatitis C..
#> Done pathway 109 : Measles..
#> Done pathway 110 : Influenza A..
#> Done pathway 111 : HTLV-I infection..
#> Done pathway 112 : Herpes simplex infection..
#> Done pathway 113 : Epstein-Barr virus infection..
#> Done pathway 114 : Pathways in cancer..
#> Done pathway 115 : Transcriptional misregulation ..
#> Done pathway 116 : Viral carcinogenesis..
#> Done pathway 117 : Colorectal cancer..
#> Done pathway 118 : Renal cell carcinoma..
#> Done pathway 119 : Pancreatic cancer..
#> Done pathway 120 : Endometrial cancer..
#> Done pathway 121 : Glioma..
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#> Done pathway 122 : Prostate cancer..
#> Done pathway 123 : Thyroid cancer..
#> Done pathway 124 : Basal cell carcinoma..
#> Done pathway 125 : Melanoma..
#> Done pathway 126 : Bladder cancer..
#> Done pathway 127 : Chronic myeloid leukemia..
#> Done pathway 128 : Acute myeloid leukemia..
#> Done pathway 129 : Small cell lung cancer..
#> Done pathway 130 : Non-small cell lung cancer..
#> Done pathway 131 : Asthma..
#> Done pathway 132 : Autoimmune thyroid disease..
#> Done pathway 133 : Systemic lupus erythematosus..
#> Done pathway 134 : Rheumatoid arthritis..
#> Done pathway 135 : Allograft rejection..
#> Done pathway 136 : Graft-versus-host disease..
#> Done pathway 137 : Arrhythmogenic right ventricul..
#> Done pathway 138 : Dilated cardiomyopathy..
#> Done pathway 139 : Viral myocarditis..
#> Finished SPIA analysis
gsRanking(spia.all)
#> DataFrame with 7 rows and 6 columns
#> GENE.SET SIZE NDE
#> <character> <numeric> <numeric>
#> 1 hsa04620_Toll-like_receptor_signaling_pathway 74 6
#> 2 hsa05202_Transcriptional_misregulation_in_cancer 89 9
#> 3 hsa05416_Viral_myocarditis 45 5
#> 4 hsa04630_Jak-STAT_signaling_pathway 72 8
#> 5 hsa04910_Insulin_signaling_pathway 115 5
#> 6 hsa05143_African_trypanosomiasis 22 4
#> 7 hsa04978_Mineral_absorption 3 1
#> T.ACT STATUS P.VALUE
#> <numeric> <numeric> <numeric>
#> 1 -3.62 -1 0.0497
#> 2 -0.209 -1 0.0726
#> 3 2.98 1 0.0768
#> 4 -1.06 -1 0.0861
#> 5 -7.35 -1 0.153
#> 6 0.263 1 0.193
#> 7 0 -1 0.199

More generally applicable is gene graph enrichment analysis (GGEA), which evaluates consistency of
interactions in a given gene regulatory network with the observed expression data Geistlinger et al., 2011.
ggea.all <- nbea(method="ggea", se=allSE, gs=hsa.gs, grn=hsa.grn)
gsRanking(ggea.all)
#> DataFrame with 9 rows and 5 columns
#> GENE.SET
#> <character>
#> 1 hsa04390_Hippo_signaling_pathway
#> 2 hsa05416_Viral_myocarditis
#> 3 hsa05217_Basal_cell_carcinoma
#> 4 hsa04520_Adherens_junction
#> 5 hsa04350_TGF-beta_signaling_pathway
#> 6 hsa05412_Arrhythmogenic_right_ventricular_cardiomyopathy_(ARVC)

https://doi.org/10.1093/bioinformatics/btr228
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#> 7 hsa04910_Insulin_signaling_pathway
#> 8 hsa04622_RIG-I-like_receptor_signaling_pathway
#> 9 hsa04210_Apoptosis
#> NR.RELS RAW.SCORE NORM.SCORE P.VALUE
#> <numeric> <numeric> <numeric> <numeric>
#> 1 62 22.8 0.367 0.002
#> 2 7 3.3 0.471 0.003
#> 3 18 6.92 0.385 0.00799
#> 4 11 4.5 0.409 0.014
#> 5 14 5.36 0.383 0.024
#> 6 4 1.75 0.437 0.032
#> 7 31 11.1 0.359 0.039
#> 8 35 12.5 0.356 0.041
#> 9 47 16.5 0.35 0.044

nbeaMethods()
#> [1] "ggea" "spia" "pathnet" "degraph" "ganpa"
#> [6] "cepa" "topologygsa" "netgsa"

Note #1: As network-based enrichment methods typically do not involve sample permutation but rather
network permutation, thus avoiding DE re-computation, they can likewise be applied to RNA-seq data.

Note #2: Given the various enrichment methods with individual benefits and limitations, combining multiple
methods can be beneficial, e.g. combined application of a set-based and a network-based method. This
has been shown to filter out spurious hits of individual methods and to reduce the outcome to gene sets
accumulating evidence from different methods Geistlinger et al., 2016, Alhamdoosh et al., 2017.

The function combResults implements the straightforward combination of results, thereby facilitating seamless
comparison of results across methods. For demonstration, we use the ORA and GSEA results for the ALL
dataset from the previous section:
res.list <- list(ora.all, gsea.all)
comb.res <- combResults(res.list)
gsRanking(comb.res)
#> DataFrame with 20 rows and 6 columns
#> GENE.SET
#> <character>
#> 1 hsa05412_Arrhythmogenic_right_ventricular_cardiomyopathy_(ARVC)
#> 2 hsa05202_Transcriptional_misregulation_in_cancer
#> 3 hsa04670_Leukocyte_transendothelial_migration
#> 4 hsa04520_Adherens_junction
#> 5 hsa05206_MicroRNAs_in_cancer
#> ... ...
#> 16 hsa05410_Hypertrophic_cardiomyopathy_(HCM)
#> 17 hsa04514_Cell_adhesion_molecules_(CAMs)
#> 18 hsa04621_NOD-like_receptor_signaling_pathway
#> 19 hsa04622_RIG-I-like_receptor_signaling_pathway
#> 20 hsa04350_TGF-beta_signaling_pathway
#> ORA.RANK GSEA.RANK MEAN.RANK ORA.PVAL GSEA.PVAL
#> <numeric> <numeric> <numeric> <numeric> <numeric>
#> 1 5.1 10.3 7.7 0.0717 0
#> 2 2.6 17.9 10.3 0.0351 0.00374
#> 3 10.3 10.3 10.3 0.122 0
#> 4 20.5 10.3 15.4 0.201 0
#> 5 23.1 25.6 24.4 0.225 0.00781

https://doi.org/10.1186/s12859-016-0884-1
https://doi.org/10.1093/bioinformatics/btw623
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#> ... ... ... ... ... ...
#> 16 41 48.7 44.9 0.403 0.0406
#> 17 69.2 23.1 46.2 0.649 0.0058
#> 18 61.5 33.3 47.4 0.631 0.0172
#> 19 15.4 84.6 50 0.178 0.354
#> 20 38.5 61.5 50 0.39 0.113

Exercise: Carry out SPIA and GGEA for the airSE and combine the results. How many gene sets are rendered
significant by both methods?

9.13 Genomic region enrichment analysis

Microarrays and next-generation sequencing are also widely applied for large-scale detection of variable and
regulatory genomic regions, e.g. single nucleotide polymorphisms, copy number variations, and transcription
factor binding sites.

Such experimentally-derived genomic region sets are raising similar questions regarding functional enrichment
as in gene expression data analysis.

Of particular interest is thereby whether experimentally-derived regions overlap more (enrichment) or less
(depletion) than expected by chance with regions representing known functional features such as genes or
promoters.

The regioneR package implements a general framework for testing overlaps of genomic regions based on
permutation sampling. This allows to repeatedly sample random regions from the genome, matching size and
chromosomal distribution of the region set under study. By recomputing the overlap with the functional
features in each permutation, statistical significance of the observed overlap can be assessed.
suppressPackageStartupMessages(library(regioneR))

To demonstrate the basic functionality of the package, we consider the overlap of gene promoter regions and
CpG islands in the human genome. We expect to find an enrichment as promoter regions are known to be
GC-rich. Hence, is the overlap between CpG islands and promoters greater than expected by chance?

We use the collection of CpG islands described in Wu et al., 2010 and restrict them to the set of canonical
chromosomes 1-23, X, and Y.
cpgHMM <- toGRanges("http://www.haowulab.org/software/makeCGI/model-based-cpg-islands-hg19.txt")
cpgHMM <- filterChromosomes(cpgHMM, chr.type="canonical")
cpgHMM <- sort(cpgHMM)
cpgHMM
#> GRanges object with 63705 ranges and 5 metadata columns:
#> seqnames ranges strand | length CpGcount
#> <Rle> <IRanges> <Rle> | <integer> <integer>
#> [1] chr1 10497-11241 * | 745 110
#> [2] chr1 28705-29791 * | 1087 115
#> [3] chr1 135086-135805 * | 720 42
#> [4] chr1 136164-137362 * | 1199 71
#> [5] chr1 137665-138121 * | 457 22
#> ... ... ... ... . ... ...
#> [63701] chrY 59213702-59214290 * | 589 43
#> [63702] chrY 59240512-59241057 * | 546 40
#> [63703] chrY 59348047-59348370 * | 324 17
#> [63704] chrY 59349137-59349565 * | 429 31
#> [63705] chrY 59361489-59362401 * | 913 128

http://bioconductor.org/packages/regioneR
https://doi.org/10.1093/biostatistics/kxq005
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#> GCcontent pctGC obsExp
#> <integer> <numeric> <numeric>
#> [1] 549 0.737 1.106
#> [2] 792 0.729 0.818
#> [3] 484 0.672 0.548
#> [4] 832 0.694 0.524
#> [5] 301 0.659 0.475
#> ... ... ... ...
#> [63701] 366 0.621 0.765
#> [63702] 369 0.676 0.643
#> [63703] 193 0.596 0.593
#> [63704] 276 0.643 0.7
#> [63705] 650 0.712 1.108
#> -------
#> seqinfo: 24 sequences from an unspecified genome; no seqlengths

Analogously, we load promoter regions in the hg19 human genome assembly as available from UCSC:
promoters <- toGRanges("http://gattaca.imppc.org/regioner/data/UCSC.promoters.hg19.bed")
promoters <- filterChromosomes(promoters, chr.type="canonical")
promoters <- sort(promoters)
promoters
#> GRanges object with 49049 ranges and 3 metadata columns:
#> seqnames ranges strand | V4 V5 V6
#> <Rle> <IRanges> <Rle> | <factor> <factor> <factor>
#> [1] chr1 9873-12073 * | TSS . +
#> [2] chr1 16565-18765 * | TSS . -
#> [3] chr1 17551-19751 * | TSS . -
#> [4] chr1 17861-20061 * | TSS . -
#> [5] chr1 19559-21759 * | TSS . -
#> ... ... ... ... . ... ... ...
#> [49045] chrY 59211948-59214148 * | TSS . +
#> [49046] chrY 59328251-59330451 * | TSS . +
#> [49047] chrY 59350972-59353172 * | TSS . +
#> [49048] chrY 59352984-59355184 * | TSS . +
#> [49049] chrY 59360654-59362854 * | TSS . -
#> -------
#> seqinfo: 24 sequences from an unspecified genome; no seqlengths

To speed up the example, we restrict analysis to chromosomes 21 and 22. Note that this is done for
demonstration only. To make an accurate claim, the complete region set should be used (which, however,
runs considerably longer).
cpg <- cpgHMM[seqnames(cpgHMM) %in% c("chr21", "chr22")]
prom <- promoters[seqnames(promoters) %in% c("chr21", "chr22")]

Now, we are applying an overlap permutation test with 100 permutations (ntimes=100), while maintaining
chromosomal distribution of the CpG island region set (per.chromosome=TRUE). Furthermore, we use the
option count.once=TRUE to count an overlapping CpG island only once, even if it overlaps with 2 or more
promoters.

Note that we use 100 permutations for demonstration only. To draw robust conclusions a minimum of 1000
permutations should be carried out.
pt <- overlapPermTest(cpg, prom, genome="hg19", ntimes=100, per.chromosome=TRUE, count.once=TRUE)
pt

https://genome.ucsc.edu/
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#> $numOverlaps
#> P-value: 0.0099009900990099
#> Z-score: 45.6077
#> Number of iterations: 100
#> Alternative: greater
#> Evaluation of the original region set: 719
#> Evaluation function: numOverlaps
#> Randomization function: randomizeRegions
#>
#> attr(,"class")
#> [1] "permTestResultsList"

summary(pt[[1]]$permuted)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 138.0 161.0 169.0 169.8 178.2 202.0

The resulting permutation p-value indicates a significant enrichment. Out of the 2859 CpG islands, 719
overlap with at least one promoter. In contrast, when repeatedly drawing random regions matching the CpG
islands in size and chromosomal distribution, the mean number of overlapping regions across permutations
was 117.7 ± 11.8.

Note #1: The function regioneR::permTest allows to incorporate user-defined functions for randomizing
regions and evaluating additional measures of overlap such as total genomic size in bp.

Note #2: The LOLA package implements a genomic region ORA, which assesses genomic region overlap
based on the hypergeometric distribution using a library of pre-defined functional region sets.

http://bioconductor.org/packages/LOLA
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Chapter 10

220: Workflow for multi-omics
analysis with MultiAssayExperiment

10.1 Instructor names and contact information

• Marcel Ramos12 (marcel.ramos@roswellpark.org)
• Ludwig Geistlinger3

• Levi Waldron4

10.2 Workshop Description

This workshop demonstrates data management and analyses of multiple assays associated with a single
set of biological specimens, using the MultiAssayExperiment data class and methods. It introduces the
RaggedExperiment data class, which provides efficient and powerful operations for representation of copy
number and mutation and variant data that are represented by different genomic ranges for each specimen.

10.2.1 Pre-requisites

• Basic knowledge of R syntax
• Familiarity with the GRanges and SummarizedExperiment classes
• Familiarity with ’omics data types including copy number and gene expression

10.2.2 Workshop Participation

Students will have a chance to build a MultiAssayExperiment object from scratch, and will also work with
more complex objects provided by the curatedTCGAData package.

1City University of New York, New York, NY, USA
2Roswell Park Comprehensive Cancer Center, Buffalo, NY
3City University of New York, New York, NY, USA
4City University of New York, New York, NY, USA
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10.2.3 R/Bioconductor packages used

• MultiAssayExperiment
• GenomicRanges
• RaggedExperiment
• curatedTCGAData
• SummarizedExperiment
• TCGAutils
• UpSetR
• AnnotationFilter
• EnsDb.Hsapiens.v86
• survival
• survminer
• pheatmap

library(MultiAssayExperiment)
library(GenomicRanges)
library(RaggedExperiment)
library(curatedTCGAData)
library(GenomicDataCommons)
library(SummarizedExperiment)
library(SingleCellExperiment)
library(TCGAutils)
library(UpSetR)
library(mirbase.db)
library(AnnotationFilter)
library(EnsDb.Hsapiens.v86)
library(survival)
library(survminer)
library(pheatmap)

10.2.4 Time outline

1h 45m total

Activity Time
Overview of key data classes 25m
Working with RaggedExperiment 20m
Building a MultiAssayExperiment from scratch 10m
TCGA multi-assay dataset 10m
Subsetting and reshaping multi-assay data 20m
Plotting, correlation, and other analyses 20m

10.3 Workshop goals and objectives

10.3.1 Learning goals

• identify appropriate data structures for different ’omics data types
• gain familiarity with GRangesList and RaggedExperiment

https://bioconductor.org/packages/MultiAssayExperiment
https://bioconductor.org/packages/GenomicRanges
https://bioconductor.org/packages/RaggedExperiment
https://bioconductor.org/packages/curatedTCGAData
https://bioconductor.org/packages/SummarizedExperiment
https://bioconductor.org/packages/TCGAutils
https://bioconductor.org/packages/UpSetR
https://bioconductor.org/packages/AnnotationFilter
https://bioconductor.org/packages/EnsDb.Hsapiens.v86
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survminer
https://cran.r-project.org/package=pheatmap
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10.3.2 Learning objectives

• use curatedTCGAData to create custom TCGA MultiAssayExperiment objects
• create a MultiAssayExperiment for TCGA or other multi’omics data
• perform subsetting, reshaping, growing, and extraction of a MultiAssayExperiment
• link MultiAssayExperiment data with packages for differential expression, machine learning, and plotting

10.4 Overview of key data classes

This section summarizes three fundamental data classes for the representation of multi-omics experiments.

10.4.1 (Ranged)SummarizedExperiment

SummarizedExperiment is the most important Bioconductor class for matrix-like experimental data, including
from RNA sequencing and microarray experiments. It can store multiple experimental data matrices of
identical dimensions, with associated metadata on the rows/genes/transcripts/other measurements (rowData),
column/sample phenotype or clinical data (colData), and the overall experiment (metadata). The derivative
class RangedSummarizedExperiment associates a GRanges or GRangesList vector with the rows. These classes
supersede the use of ExpressionSet. Note that many other classes for experimental data are actually derived
from SummarizedExperiment; for example, the SingleCellExperiment class for single-cell RNA sequencing
experiments extends RangedSummarizedExperiment, which in turn extends SummarizedExperiment:
library(SingleCellExperiment)
extends("SingleCellExperiment")
#> [1] "SingleCellExperiment" "RangedSummarizedExperiment"
#> [3] "SummarizedExperiment" "Vector"
#> [5] "Annotated"

Thus, although SingleCellExperiment provides additional methods over RangedSummarizedExperiment, it
also inherits all the methods of SummarizedExperiment and RangedSummarizedExperiment, so everything
you learn about SummarizedExperiment will be applicable to SingleCellExperiment.

10.4.2 RaggedExperiment

RaggedExperiment is a flexible data representation for segmented copy number, somatic mutations such as
represented in .vcf files, and other ragged array schema for genomic location data. Like the GRangesList
class from GenomicRanges, RaggedExperiment can be used to represent differing genomic ranges on each of
a set of samples. In fact, RaggedExperiment contains a GRangesList:
showClass("RaggedExperiment")
#> Class "RaggedExperiment" [package "RaggedExperiment"]
#>
#> Slots:
#>
#> Name: assays rowidx colidx metadata
#> Class: GRangesList integer integer list
#>
#> Extends: "Annotated"

However, RaggedExperiment provides a flexible set of Assay methods to support transformation of such data
to matrix format.
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Figure 10.1: A matrix-like container where rows represent features of interest and columns represent samples.
The objects contain one or more assays, each represented by a matrix-like object of numeric or other mode.
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Figure 10.2: RaggedExperiment object schematic. Rows and columns represent genomic ranges and samples,
respectively. Assay operations can be performed with (from left to right) compactAssay, qreduceAssay, and
sparseAssay.
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10.4.3 MultiAssayExperiment

MultiAssayExperiment is an integrative container for coordinating multi-omics experiment data on a set of
biological specimens. As much as possible, its methods adopt the same vocabulary as SummarizedExperiment.
A MultiAssayExperiment can contain any number of assays with different representations. Assays may be ID-
based, where measurements are indexed identifiers of genes, microRNA, proteins, microbes, etc. Alternatively,
assays may be range-based, where measurements correspond to genomic ranges that can be represented as
GRanges objects, such as gene expression or copy number.
For ID-based assays, there is no requirement that the same IDs be present for different experiments. For
range-based assays, there is also no requirement that the same ranges be present for different experiments;
furthermore, it is possible for different samples within an experiment to be represented by different ranges.
The following data classes have been tested to work as elements of a MultiAssayExperiment:

1. matrix: the most basic class for ID-based datasets, could be used for example for gene expression
summarized per-gene, microRNA, metabolomics, or microbiome data.

2. SummarizedExperiment and derived methods: described above, could be used for miRNA, gene
expression, proteomics, or any matrix-like data where measurements are represented by IDs.

3. RangedSummarizedExperiment: described above, could be used for gene expression, methylation, or
other data types referring to genomic positions.

4. ExpressionSet: Another rich representation for ID-based datasets, supported only for legacy reasons
5. RaggedExperiment: described above, for non-rectangular (ragged) ranged-based datasets such as

segmented copy number, where segmentation of copy number alterations occurs and different genomic
locations in each sample.

6. RangedVcfStack: For VCF archives broken up by chromosome (see VcfStack class defined in the
GenomicFiles package)

7. DelayedMatrix: An on-disk representation of matrix-like objects for large datasets. It reduces memory
usage and optimizes performance with delayed operations. This class is part of the DelayedArray
package.

Note that any data class extending these classes, and in fact any data class supporting row and column
names and subsetting can be used as an element of a MultiAssayExperiment.

10.5 Working with RaggedExperiment

You can skip this section if you prefer to focus on the functionality of MultiAssayExperiment. In most use
cases, you would likely convert a RaggedExperiment to matrix or RangedSummarizedExperiment using one
of the Assay functions below, and either concatenate this rectangular object to the MultiAssayExperiment
or use it to replace the RaggedExperiment.

10.5.1 Constructing a RaggedExperiment object

We start with a toy example of two GRanges objects, providing ranges on two chromosomes in two samples:
sample1 <- GRanges(

c(A = "chr1:1-10:-", B = "chr1:8-14:+", C = "chr1:15-18:+"),
score = 3:5, type=c("germline", "somatic", "germline"))

sample2 <- GRanges(
c(D = "chr1:1-10:-", E = "chr1:11-18:+"),
score = 11:12, type=c("germline", "somatic"))

Include column data colData to describe the samples:
colDat <- DataFrame(id=1:2, status = factor(c("control", "case")))
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Figure 10.3: MultiAssayExperiment object schematic. colData provides data about the patients, cell lines, or
other biological units, with one row per unit and one column per variable. The experiments are a list of assay
datasets of arbitrary class. The sampleMap relates each column (observation) in ExperimentList to exactly
one row (biological unit) in colData; however, one row of colData may map to zero, one, or more columns per
assay, allowing for missing and replicate assays. sampleMap allows for per-assay sample naming conventions.
Metadata can be used to store information in arbitrary format about the MultiAssayExperiment. Green
stripes indicate a mapping of one subject to multiple observations across experiments.
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The RaggedExperiment can be constructed from individual Granges:
(ragexp <- RaggedExperiment(

sample1 = sample1,
sample2 = sample2,
colData = colDat))

#> class: RaggedExperiment
#> dim: 5 2
#> assays(2): score type
#> rownames(5): A B C D E
#> colnames(2): sample1 sample2
#> colData names(2): id status

Or from a GRangesList:
grl <- GRangesList(sample1=sample1, sample2=sample2)
ragexp2 <- RaggedExperiment(grl, colData = colDat)
identical(ragexp, ragexp2)
#> [1] TRUE

Note that the original ranges are is represented as the rowRanges of the RaggedExperiment:
rowRanges(ragexp)
#> GRanges object with 5 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> A chr1 1-10 -
#> B chr1 8-14 +
#> C chr1 15-18 +
#> D chr1 1-10 -
#> E chr1 11-18 +
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

10.5.2 *Assay functions

A suite of *Assay operations allow users to resize the matrix-like representation of ranges to varying row
dimensions (see RaggedExperiment Figure for a visual example).

The four main Assay functions for converting to matrix are:

• sparseAssay: leave ranges exactly as-is
• compactAssay: combine identical ranges
• disjoinAssay: disjoin ranges that overlap across samples
• qreduceAssay: find overlaps with provided “query” ranges

These each have a corresponding function for conversion to RangedSummarizedExperiment.

10.5.2.1 sparseAssay

The most straightforward matrix representation of a RaggedExperiment will return a matrix with the number
of rows equal to the total number of ranges defined across all samples. i.e. the 5 rows of the sparseAssay
result:
sparseAssay(ragexp)
#> sample1 sample2
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#> A 3 NA
#> B 4 NA
#> C 5 NA
#> D NA 11
#> E NA 12

correspond to the ranges of the unlisted GRangesList:
unlist(grl)
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | score type
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> sample1.A chr1 1-10 - | 3 germline
#> sample1.B chr1 8-14 + | 4 somatic
#> sample1.C chr1 15-18 + | 5 germline
#> sample2.D chr1 1-10 - | 11 germline
#> sample2.E chr1 11-18 + | 12 somatic
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

The rownames of the sparseAssay result are equal to the names of the GRanges elements. The values in the
matrix returned by sparseAssay correspond to the first columns of the mcols of each GRangesList element,
in this case the “score” column.

Note, this is the default assay() method of RaggedExperiment:
assay(ragexp, "score")
#> sample1 sample2
#> A 3 NA
#> B 4 NA
#> C 5 NA
#> D NA 11
#> E NA 12
assay(ragexp, "type")
#> sample1 sample2
#> A "germline" NA
#> B "somatic" NA
#> C "germline" NA
#> D NA "germline"
#> E NA "somatic"

10.5.2.2 compactAssay

The dimensions of the compactAssay result differ from that of the sparseAssay result only if there are
identical ranges in different samples. Identical ranges are placed in the same row in the output. Ranges with
any difference in start, end, or strand, will be kept on different rows. Non-disjoint ranges are not collapsed.
compactAssay(ragexp)
#> sample1 sample2
#> chr1:8-14:+ 4 NA
#> chr1:11-18:+ NA 12
#> chr1:15-18:+ 5 NA
#> chr1:1-10:- 3 11
compactAssay(ragexp, "type")
#> sample1 sample2
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#> chr1:8-14:+ "somatic" NA
#> chr1:11-18:+ NA "somatic"
#> chr1:15-18:+ "germline" NA
#> chr1:1-10:- "germline" "germline"

Note that row names are constructed from the ranges, and the names of the GRanges vectors are lost, unlike
in the sparseAssay result.

10.5.2.3 disjoinAssay

This function is similar to compactAssay except the rows are disjoint5 ranges. Elements of the matrix are
summarized by applying the simplifyDisjoin functional argument to assay values of overlapping ranges.
disjoinAssay(ragexp, simplifyDisjoin = mean)
#> sample1 sample2
#> chr1:8-10:+ 4 NA
#> chr1:11-14:+ 4 12
#> chr1:15-18:+ 5 12
#> chr1:1-10:- 3 11

10.5.2.4 qreduceAssay

The qreduceAssay function is the most complicated but likely the most useful of the RaggedExperiment
Assay functions. It requires you to provide a query argument that is a GRanges vector, and the rows of
the resulting matrix correspond to the elements of this GRanges. The returned matrix will have dimensions
length(query) by ncol(x). Elements of the resulting matrix correspond to the overlap of the i th query
range in the j th sample, summarized according to the simplifyReduce functional argument. This can be
useful, for example, to calculate per-gene copy number or mutation status by providing the genomic ranges of
every gene as the query.

The simplifyReduce argument in qreduceAssay allows the user to summarize overlapping regions with a
custom method for the given “query” region of interest. We provide one for calculating a weighted average
score per query range, where the weight is proportional to the overlap widths between overlapping ranges
and a query range.

Note that there are three arguments to this function. See the documentation for additional details.
weightedmean <- function(scores, ranges, qranges)
{

isects <- pintersect(ranges, qranges)
sum(scores * width(isects)) / sum(width(isects))

}

The call to qreduceAssay calculates the overlaps between the ranges of each sample:
grl
#> GRangesList object of length 2:
#> $sample1
#> GRanges object with 3 ranges and 2 metadata columns:
#> seqnames ranges strand | score type
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> A chr1 1-10 - | 3 germline
#> B chr1 8-14 + | 4 somatic
#> C chr1 15-18 + | 5 germline

5A disjoint set of ranges has no overlap between any ranges of the set.



10.6. WORKING WITH MULTIASSAYEXPERIMENT 215

#>
#> $sample2
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | score type
#> D chr1 1-10 - | 11 germline
#> E chr1 11-18 + | 12 somatic
#>
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

with the query ranges (an arbitrary set is defined here for demonstration): First create a demonstration
“query” region of interest:
(query <- GRanges(c("chr1:1-14:-", "chr1:15-18:+")))
#> GRanges object with 2 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chr1 1-14 -
#> [2] chr1 15-18 +
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

using the simplifyReduce function to resolve overlapping ranges and return a matrix with rows corresponding
to the query:
qreduceAssay(ragexp, query, simplifyReduce = weightedmean)
#> sample1 sample2
#> chr1:1-14:- 3 11
#> chr1:15-18:+ 5 12

10.5.3 Conversion to RangedSummarizedExperiment

These methods all have corresponding methods to return a RangedSummarizedExperiment and preserve the
colData:
sparseSummarizedExperiment(ragexp)
compactSummarizedExperiment(ragexp)
disjoinSummarizedExperiment(ragexp, simplify = mean)
qreduceSummarizedExperiment(ragexp, query=query, simplify=weightedmean)

10.6 Working with MultiAssayExperiment

10.7 API cheat sheet

10.7.1 The MultiAssayExperiment miniACC demo object

Get started by trying out MultiAssayExperiment using a subset of the TCGA adrenocortical carcinoma
(ACC) dataset provided with the package. This dataset provides five assays on 92 patients, although all five
assays were not performed for every patient:

1. RNASeq2GeneNorm: gene mRNA abundance by RNA-seq
2. gistict: GISTIC genomic copy number by gene
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Figure 10.4: The MultiAssayExperiment API for construction, access, subsetting, management, and reshaping
to formats for application of R/Bioconductor graphics and analysis packages.
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3. RPPAArray: protein abundance by Reverse Phase Protein Array
4. Mutations: non-silent somatic mutations by gene
5. miRNASeqGene: microRNA abundance by microRNA-seq.

data(miniACC)
miniACC
#> A MultiAssayExperiment object of 5 listed
#> experiments with user-defined names and respective classes.
#> Containing an ExperimentList class object of length 5:
#> [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
#> [2] gistict: SummarizedExperiment with 198 rows and 90 columns
#> [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
#> [4] Mutations: matrix with 97 rows and 90 columns
#> [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
#> Features:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample availability DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices

10.7.2 colData - information biological units

This slot is a DataFrame describing the characteristics of biological units, for example clinical data for patients.
In the prepared datasets from [The Cancer Genome Atlas][], each row is one patient and each column is a
clinical, pathological, subtype, or other variable. The $ function provides a shortcut for accessing or setting
colData columns.
colData(miniACC)[1:4, 1:4]
#> DataFrame with 4 rows and 4 columns
#> patientID years_to_birth vital_status days_to_death
#> <character> <integer> <integer> <integer>
#> TCGA-OR-A5J1 TCGA-OR-A5J1 58 1 1355
#> TCGA-OR-A5J2 TCGA-OR-A5J2 44 1 1677
#> TCGA-OR-A5J3 TCGA-OR-A5J3 23 0 NA
#> TCGA-OR-A5J4 TCGA-OR-A5J4 23 1 423
table(miniACC$race)
#>
#> asian black or african american
#> 2 1
#> white
#> 78

Key points about the colData:

• Each row maps to zero or more observations in each experiment in the ExperimentList, below.
• One row per biological unit

– MultiAssayExperiment supports both missing observations and replicate observations, ie one row
of colData can map to 0, 1, or more columns of any of the experimental data matrices.

– therefore you could treat replicate observations as one or multiple rows of colData, and this will
result in different behaviors of functions you will learn later like subsetting, duplicated(), and
wideFormat().

– multiple time points, or distinct biological replicates, should probably be separate rows of the
colData.
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10.7.3 ExperimentList - experiment data

A base list or ExperimentList object containing the experimental datasets for the set of samples collected.
This gets converted into a class ExperimentList during construction.
experiments(miniACC)
#> ExperimentList class object of length 5:
#> [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
#> [2] gistict: SummarizedExperiment with 198 rows and 90 columns
#> [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
#> [4] Mutations: matrix with 97 rows and 90 columns
#> [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns

Key points:

• One matrix-like dataset per list element (although they do not even need to be matrix-like, see for
example the RaggedExperiment package)

• One matrix column per assayed specimen. Each matrix column must correspond to exactly one row of
colData: in other words, you must know which patient or cell line the observation came from. However,
multiple columns can come from the same patient, or there can be no data for that patient.

• Matrix rows correspond to variables, e.g. genes or genomic ranges
• ExperimentList elements can be genomic range-based (e.g. SummarizedExperiment::RangedSummarizedExperiment-class

or RaggedExperiment::RaggedExperiment-class) or ID-based data (e.g. SummarizedExperiment::SummarizedExperiment-class,
Biobase::eSet-class base::matrix-class, DelayedArray::DelayedArray-class, and derived
classes)

• Any data class can be included in the ExperimentList, as long as it supports: single-bracket subsetting
([), dimnames, and dim. Most data classes defined in Bioconductor meet these requirements.

10.7.4 sampleMap - relationship graph

sampleMap is a graph representation of the relationship between biological units and experimental results. In
simple cases where the column names of ExperimentList data matrices match the row names of colData,
the user won’t need to specify or think about a sample map, it can be created automatically by the
MultiAssayExperiment constructor. sampleMap is a simple three-column DataFrame:

1. assay column: the name of the assay, and found in the names of ExperimentList list names
2. primary column: identifiers of patients or biological units, and found in the row names of colData
3. colname column: identifiers of assay results, and found in the column names of ExperimentList

elements Helper functions are available for creating a map from a list. See ?listToMap
sampleMap(miniACC)
#> DataFrame with 385 rows and 3 columns
#> assay primary colname
#> <factor> <character> <character>
#> 1 RNASeq2GeneNorm TCGA-OR-A5J1 TCGA-OR-A5J1-01A-11R-A29S-07
#> 2 RNASeq2GeneNorm TCGA-OR-A5J2 TCGA-OR-A5J2-01A-11R-A29S-07
#> 3 RNASeq2GeneNorm TCGA-OR-A5J3 TCGA-OR-A5J3-01A-11R-A29S-07
#> 4 RNASeq2GeneNorm TCGA-OR-A5J5 TCGA-OR-A5J5-01A-11R-A29S-07
#> 5 RNASeq2GeneNorm TCGA-OR-A5J6 TCGA-OR-A5J6-01A-31R-A29S-07
#> ... ... ... ...
#> 381 miRNASeqGene TCGA-PA-A5YG TCGA-PA-A5YG-01A-11R-A29W-13
#> 382 miRNASeqGene TCGA-PK-A5H8 TCGA-PK-A5H8-01A-11R-A29W-13
#> 383 miRNASeqGene TCGA-PK-A5H9 TCGA-PK-A5H9-01A-11R-A29W-13
#> 384 miRNASeqGene TCGA-PK-A5HA TCGA-PK-A5HA-01A-11R-A29W-13
#> 385 miRNASeqGene TCGA-PK-A5HB TCGA-PK-A5HB-01A-11R-A29W-13



10.8. MULTIASSAYEXPERIMENT SUBSETTING 219

Key points:

• relates experimental observations (colnames) to colData
• permits experiment-specific sample naming, missing, and replicate observations

back to top

10.7.5 metadata

Metadata can be used to keep additional information about patients, assays performed on individuals or
on the entire cohort, or features such as genes, proteins, and genomic ranges. There are many options
available for storing metadata. First, MultiAssayExperiment has its own metadata for describing the entire
experiment:
metadata(miniACC)
#> $title
#> [1] "Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma"
#>
#> $PMID
#> [1] "27165744"
#>
#> $sourceURL
#> [1] "http://s3.amazonaws.com/multiassayexperiments/accMAEO.rds"
#>
#> $RPPAfeatureDataURL
#> [1] "http://genomeportal.stanford.edu/pan-tcga/show_target_selection_file?filename=Allprotein.txt"
#>
#> $colDataExtrasURL
#> [1] "http://www.cell.com/cms/attachment/2062093088/2063584534/mmc3.xlsx"

Additionally, the DataFrame class used by sampleMap and colData, as well as the ExperimentList class,
similarly support metadata. Finally, many experimental data objects that can be used in the ExperimentList
support metadata. These provide flexible options to users and to developers of derived classes.

10.8 MultiAssayExperiment Subsetting

10.8.1 Single bracket [

In pseudo code below, the subsetting operations work on the rows of the following indices: 1. i experimental
data rows 2. j the primary names or the column names (entered as a list or List) 3. k assay

multiassayexperiment[i = rownames, j = primary or colnames, k = assay]

Subsetting operations always return another MultiAssayExperiment. For example, the following will return
any rows named “MAPK14” or “IGFBP2”, and remove any assays where no rows match:
miniACC[c("MAPK14", "IGFBP2"), , ]

The following will keep only patients of pathological stage iv, and all their associated assays:
miniACC[, miniACC$pathologic_stage == "stage iv", ]
#> harmonizing input:
#> removing 311 sampleMap rows with 'colname' not in colnames of experiments
#> removing 74 colData rownames not in sampleMap 'primary'

And the following will keep only the RNA-seq dataset, and only patients for which this assay is available:
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miniACC[, , "RNASeq2GeneNorm"]
#> harmonizing input:
#> removing 13 colData rownames not in sampleMap 'primary'

10.8.2 Subsetting by genomic ranges

If any ExperimentList objects have features represented by genomic ranges (e.g. RangedSummarizedExperiment,
RaggedExperiment), then a GRanges object in the first subsetting position will subset these objects as in
GenomicRanges::findOverlaps(). Any non-ranged ExperimentList element will be subset to zero rows.

10.8.3 Double bracket [[

The “double bracket” method ([[) is a convenience function for extracting a single element of the
MultiAssayExperiment ExperimentList. It avoids the use of experiments(mae)[[1L]]. For example,
both of the following extract the ExpressionSet object containing RNA-seq data:
miniACC[[1L]] #or equivalently, miniACC[["RNASeq2GeneNorm"]]
#> class: SummarizedExperiment
#> dim: 198 79
#> metadata(3): experimentData annotation protocolData
#> assays(1): exprs
#> rownames(198): DIRAS3 MAPK14 ... SQSTM1 KCNJ13
#> rowData names(0):
#> colnames(79): TCGA-OR-A5J1-01A-11R-A29S-07
#> TCGA-OR-A5J2-01A-11R-A29S-07 ... TCGA-PK-A5HA-01A-11R-A29S-07
#> TCGA-PK-A5HB-01A-11R-A29S-07
#> colData names(0):

10.9 Complete cases

complete.cases() shows which patients have complete data for all assays:
summary(complete.cases(miniACC))
#> Mode FALSE TRUE
#> logical 49 43

The above logical vector could be used for patient subsetting. More simply, intersectColumns() will select
complete cases and rearrange each ExperimentList element so its columns correspond exactly to rows of
colData in the same order:
accmatched = intersectColumns(miniACC)
#> harmonizing input:
#> removing 170 sampleMap rows with 'colname' not in colnames of experiments
#> removing 49 colData rownames not in sampleMap 'primary'

Note, the column names of the assays in accmatched are not the same because of assay-specific identifiers,
but they have been automatically re-arranged to correspond to the same patients. In these TCGA assays,
the first three - delimited positions correspond to patient, ie the first patient is TCGA-OR-A5J2 :
colnames(accmatched)
#> CharacterList of length 5
#> [["RNASeq2GeneNorm"]] TCGA-OR-A5J2-01A-11R-A29S-07 ...
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#> [["gistict"]] TCGA-OR-A5J2-01A-11D-A29H-01 ...
#> [["RPPAArray"]] TCGA-OR-A5J2-01A-21-A39K-20 ...
#> [["Mutations"]] TCGA-OR-A5J2-01A-11D-A29I-10 ...
#> [["miRNASeqGene"]] TCGA-OR-A5J2-01A-11R-A29W-13 ...

10.10 Row names that are common across assays

intersectRows() keeps only rows that are common to each assay, and aligns them in identical order. For
example, to keep only genes where data are available for RNA-seq, GISTIC copy number, and somatic
mutations:
accmatched2 <- intersectRows(miniACC[, , c("RNASeq2GeneNorm", "gistict", "Mutations")])
rownames(accmatched2)
#> CharacterList of length 3
#> [["RNASeq2GeneNorm"]] DIRAS3 G6PD KDR ERBB3 ... RET CDKN2A MACC1 CHGA
#> [["gistict"]] DIRAS3 G6PD KDR ERBB3 AKT1S1 ... PREX1 RET CDKN2A MACC1 CHGA
#> [["Mutations"]] DIRAS3 G6PD KDR ERBB3 AKT1S1 ... RET CDKN2A MACC1 CHGA

back to top

10.11 Extraction

10.11.1 assay and assays

The assay and assays methods follow SummarizedExperiment convention. The assay (singular) method
will extract the first element of the ExperimentList and will return a matrix.
class(assay(miniACC))
#> [1] "matrix"

The assays (plural) method will return a SimpleList of the data with each element being a matrix.
assays(miniACC)
#> List of length 5
#> names(5): RNASeq2GeneNorm gistict RPPAArray Mutations miRNASeqGene

Key point:

• Whereas the [[ returned an assay as its original class, assay() and assays() convert the assay data
to matrix form.

back to top

10.12 Summary of slots and accessors

Slot in the MultiAssayExperiment can be accessed or set using their accessor functions:

Slot Accessor
ExperimentList experiments()
colData colData() and $ *
sampleMap sampleMap()
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Slot Accessor
metadata metadata()

__*__ The $ operator on a MultiAssayExperiment returns a single column of the colData.

10.13 Transformation / reshaping

The longFormat or wideFormat functions will “reshape” and combine experiments with each other and with
colData into one DataFrame. These functions provide compatibility with most of the common R/Bioconductor
functions for regression, machine learning, and visualization.

10.13.1 longFormat

In long format a single column provides all assay results, with additional optional colData columns whose
values are repeated as necessary. Here assay is the name of the ExperimentList element, primary is the
patient identifier (rowname of colData), rowname is the assay rowname (in this case genes), colname is the
assay-specific identifier (column name), value is the numeric measurement (gene expression, copy number,
presence of a non-silent mutation, etc), and following these are the vital_status and days_to_death colData
columns that have been added:
longFormat(miniACC[c("TP53", "CTNNB1"), , ],

colDataCols = c("vital_status", "days_to_death"))
#> DataFrame with 518 rows and 7 columns
#> assay primary rowname colname
#> <character> <character> <character> <character>
#> 1 RNASeq2GeneNorm TCGA-OR-A5J1 TP53 TCGA-OR-A5J1-01A-11R-A29S-07
#> 2 RNASeq2GeneNorm TCGA-OR-A5J1 CTNNB1 TCGA-OR-A5J1-01A-11R-A29S-07
#> 3 RNASeq2GeneNorm TCGA-OR-A5J2 TP53 TCGA-OR-A5J2-01A-11R-A29S-07
#> 4 RNASeq2GeneNorm TCGA-OR-A5J2 CTNNB1 TCGA-OR-A5J2-01A-11R-A29S-07
#> 5 RNASeq2GeneNorm TCGA-OR-A5J3 TP53 TCGA-OR-A5J3-01A-11R-A29S-07
#> ... ... ... ... ...
#> 514 Mutations TCGA-PK-A5HA CTNNB1 TCGA-PK-A5HA-01A-11D-A29I-10
#> 515 Mutations TCGA-PK-A5HB TP53 TCGA-PK-A5HB-01A-11D-A29I-10
#> 516 Mutations TCGA-PK-A5HB CTNNB1 TCGA-PK-A5HB-01A-11D-A29I-10
#> 517 Mutations TCGA-PK-A5HC TP53 TCGA-PK-A5HC-01A-11D-A30A-10
#> 518 Mutations TCGA-PK-A5HC CTNNB1 TCGA-PK-A5HC-01A-11D-A30A-10
#> value vital_status days_to_death
#> <numeric> <integer> <integer>
#> 1 563.4006 1 1355
#> 2 5634.4669 1 1355
#> 3 165.4811 1 1677
#> 4 62658.3913 1 1677
#> 5 956.3028 0 NA
#> ... ... ... ...
#> 514 0 0 NA
#> 515 0 0 NA
#> 516 0 0 NA
#> 517 0 0 NA
#> 518 0 0 NA
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10.13.2 wideFormat

In wide format, each feature from each assay goes in a separate column, with one row per primary identifier
(patient). Here, each variable becomes a new column:
wideFormat(miniACC[c("TP53", "CTNNB1"), , ],

colDataCols = c("vital_status", "days_to_death"))
#> DataFrame with 92 rows and 9 columns
#> primary vital_status days_to_death RNASeq2GeneNorm_CTNNB1
#> <character> <integer> <integer> <numeric>
#> 1 TCGA-OR-A5J1 1 1355 5634.4669
#> 2 TCGA-OR-A5J2 1 1677 62658.3913
#> 3 TCGA-OR-A5J3 0 NA 6337.4256
#> 4 TCGA-OR-A5J4 1 423 NA
#> 5 TCGA-OR-A5J5 1 365 5979.055
#> ... ... ... ... ...
#> 88 TCGA-PK-A5H9 0 NA 5258.9863
#> 89 TCGA-PK-A5HA 0 NA 8120.1654
#> 90 TCGA-PK-A5HB 0 NA 5257.8148
#> 91 TCGA-PK-A5HC 0 NA NA
#> 92 TCGA-P6-A5OG 1 383 6390.0997
#> RNASeq2GeneNorm_TP53 gistict_CTNNB1 gistict_TP53 Mutations_CTNNB1
#> <numeric> <numeric> <numeric> <numeric>
#> 1 563.4006 0 0 0
#> 2 165.4811 1 0 1
#> 3 956.3028 0 0 0
#> 4 NA 0 1 0
#> 5 1169.6359 0 0 0
#> ... ... ... ... ...
#> 88 890.8663 0 0 0
#> 89 683.5722 0 -1 0
#> 90 237.3697 -1 -1 0
#> 91 NA 1 1 0
#> 92 815.3446 1 -1 NA
#> Mutations_TP53
#> <numeric>
#> 1 0
#> 2 1
#> 3 0
#> 4 0
#> 5 0
#> ... ...
#> 88 0
#> 89 0
#> 90 0
#> 91 0
#> 92 NA
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10.14 MultiAssayExperiment class construction and concatena-
tion

10.14.1 MultiAssayExperiment constructor function

The MultiAssayExperiment constructor function can take three arguments:

1. experiments - An ExperimentList or list of data
2. colData - A DataFrame describing the patients (or cell lines, or other biological units)
3. sampleMap - A DataFrame of assay, primary, and colname identifiers

The miniACC object can be reconstructed as follows:
MultiAssayExperiment(experiments=experiments(miniACC),

colData=colData(miniACC),
sampleMap=sampleMap(miniACC),
metadata=metadata(miniACC))

#> A MultiAssayExperiment object of 5 listed
#> experiments with user-defined names and respective classes.
#> Containing an ExperimentList class object of length 5:
#> [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
#> [2] gistict: SummarizedExperiment with 198 rows and 90 columns
#> [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
#> [4] Mutations: matrix with 97 rows and 90 columns
#> [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
#> Features:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample availability DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices

10.14.2 prepMultiAssay - Constructor function helper

The prepMultiAssay function allows the user to diagnose typical problems when creating a
MultiAssayExperiment object. See ?prepMultiAssay for more details.

10.14.3 c - concatenate to MultiAssayExperiment

The c function allows the user to concatenate an additional experiment to an existing MultiAssayExperiment.
The optional sampleMap argument allows concatenating an assay whose column names do not match the
row names of colData. For convenience, the mapFrom argument allows the user to map from a particular
experiment provided that the order of the colnames is in the same. A warning will be issued to make the
user aware of this assumption. For example, to concatenate a matrix of log2-transformed RNA-seq results:
miniACC2 <- c(miniACC, log2rnaseq = log2(assays(miniACC)$RNASeq2GeneNorm), mapFrom=1L)
#> Warning in .local(x, ...): Assuming column order in the data provided
#> matches the order in 'mapFrom' experiment(s) colnames
experiments(miniACC2)
#> ExperimentList class object of length 6:
#> [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
#> [2] gistict: SummarizedExperiment with 198 rows and 90 columns
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#> [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
#> [4] Mutations: matrix with 97 rows and 90 columns
#> [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
#> [6] log2rnaseq: matrix with 198 rows and 79 columns

back to top

10.14.4 Building a MultiAssayExperiment from scratch

To start from scratch building your own MultiAssayExperiment, see the package Coordinating Analysis of
Multi-Assay Experiments vignette. The package cheat sheet is also helpful.

If anything is unclear, please ask a question at https://support.bioconductor.org/ or create an issue on the
MultiAssayExperiment issue tracker.

10.15 The Cancer Genome Atlas (TCGA) as MultiAssayExperi-
ment objects

Most unrestricted TCGA data are available as MultiAssayExperiment objects from the curatedTCGAData
package. This represents a lot of harmonization!
library(curatedTCGAData)
curatedTCGAData("ACC")
#> ACC_CNASNP
#> "ACC_CNASNP-20160128.rda"
#> ACC_CNVSNP
#> "ACC_CNVSNP-20160128.rda"
#> ACC_GISTIC_AllByGene
#> "ACC_GISTIC_AllByGene-20160128.rda"
#> ACC_GISTIC_ThresholdedByGene
#> "ACC_GISTIC_ThresholdedByGene-20160128.rda"
#> ACC_Methylation
#> "ACC_Methylation-20160128.rda"
#> ACC_miRNASeqGene
#> "ACC_miRNASeqGene-20160128.rda"
#> ACC_Mutation
#> "ACC_Mutation-20160128.rda"
#> ACC_RNASeq2GeneNorm
#> "ACC_RNASeq2GeneNorm-20160128.rda"
#> ACC_RPPAArray
#> "ACC_RPPAArray-20160128.rda"
suppressMessages({

acc <- curatedTCGAData("ACC",
assays = c("miRNASeqGene", "RPPAArray", "Mutation", "RNASeq2GeneNorm", "CNVSNP"),
dry.run = FALSE)

})
acc
#> A MultiAssayExperiment object of 5 listed
#> experiments with user-defined names and respective classes.
#> Containing an ExperimentList class object of length 5:
#> [1] ACC_CNVSNP-20160128: RaggedExperiment with 21052 rows and 180 columns
#> [2] ACC_miRNASeqGene-20160128: SummarizedExperiment with 1046 rows and 80 columns

https://bioconductor.org/packages/release/bioc/vignettes/MultiAssayExperiment/inst/doc/MultiAssayExperiment.html
https://bioconductor.org/packages/release/bioc/vignettes/MultiAssayExperiment/inst/doc/MultiAssayExperiment.html
https://bioconductor.org/packages/release/bioc/vignettes/MultiAssayExperiment/inst/doc/MultiAssayExperiment_cheatsheet.pdf
https://support.bioconductor.org/
https://github.com/waldronlab/MultiAssayExperiment/issues
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#> [3] ACC_Mutation-20160128: RaggedExperiment with 20166 rows and 90 columns
#> [4] ACC_RNASeq2GeneNorm-20160128: SummarizedExperiment with 20501 rows and 79 columns
#> [5] ACC_RPPAArray-20160128: SummarizedExperiment with 192 rows and 46 columns
#> Features:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample availability DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices

These objects contain most unrestricted TCGA assay and clinical / pathological data, as well as material
curated from the supplements of published TCGA primary papers at the end of the colData columns:
dim(colData(acc))
#> [1] 92 822
tail(colnames(colData(acc)), 10)
#> [1] "MethyLevel" "miRNA.cluster" "SCNA.cluster"
#> [4] "protein.cluster" "COC" "OncoSign"
#> [7] "purity" "ploidy" "genome_doublings"
#> [10] "ADS"

The TCGAutils package provides additional helper functions, see below.

10.16 Utilities for TCGA

Aside from the available reshaping functions already included in the MultiAssayExperiment package, the
TCGAutils package provides additional helper functions for working with TCGA data.

10.16.1 “Simplification” of curatedTCGAData objects

A number of helper functions are available for managing datasets from curatedTCGAData. These include:

• Conversions of SummarizedExperiment to RangedSummarizedExperiment based on TxDb.Hsapiens.UCSC.hg19.knownGene
for:
– mirToRanges: microRNA
– symbolsToRanges: gene symbols

• qreduceTCGA: convert RaggedExperiment objects to RangedSummarizedExperiment with one row per
gene symbol, for:
– segmented copy number datasets (“CNVSNP” and “CNASNP”)
– somatic mutation datasets (“Mutation”), with a value of 1 for any non-silent mutation and a value

of 0 for no mutation or silent mutation

The simplifyTCGA function combines all of the above operations to create a more managable
MultiAssayExperiment object and using RangedSummarizedExperiment assays where possible.
(simpa <- TCGAutils::simplifyTCGA(acc))
#>
#> 'select()' returned 1:1 mapping between keys and columns
#> 'select()' returned 1:many mapping between keys and columns
#> 'select()' returned 1:1 mapping between keys and columns
#> A MultiAssayExperiment object of 7 listed
#> experiments with user-defined names and respective classes.

http://bioconductor.org/packages/TCGAutils
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#> Containing an ExperimentList class object of length 7:
#> [1] ACC_RPPAArray-20160128: SummarizedExperiment with 192 rows and 46 columns
#> [2] ACC_Mutation-20160128_simplified: RangedSummarizedExperiment with 22945 rows and 90 columns
#> [3] ACC_CNVSNP-20160128_simplified: RangedSummarizedExperiment with 22945 rows and 180 columns
#> [4] ACC_miRNASeqGene-20160128_ranged: RangedSummarizedExperiment with 1002 rows and 80 columns
#> [5] ACC_miRNASeqGene-20160128_unranged: SummarizedExperiment with 44 rows and 80 columns
#> [6] ACC_RNASeq2GeneNorm-20160128_ranged: RangedSummarizedExperiment with 17594 rows and 79 columns
#> [7] ACC_RNASeq2GeneNorm-20160128_unranged: SummarizedExperiment with 2907 rows and 79 columns
#> Features:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample availability DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices

10.16.2 What types of samples are in the data?

Solution

The sampleTables function gives you an overview of samples in each assay:
sampleTables(acc)
#> $`ACC_CNVSNP-20160128`
#>
#> 01 10 11
#> 90 85 5
#>
#> $`ACC_miRNASeqGene-20160128`
#>
#> 01
#> 80
#>
#> $`ACC_Mutation-20160128`
#>
#> 01
#> 90
#>
#> $`ACC_RNASeq2GeneNorm-20160128`
#>
#> 01
#> 79
#>
#> $`ACC_RPPAArray-20160128`
#>
#> 01
#> 46

head(sampleTypes)
#> Code Definition Short.Letter.Code
#> 1 01 Primary Solid Tumor TP
#> 2 02 Recurrent Solid Tumor TR
#> 3 03 Primary Blood Derived Cancer - Peripheral Blood TB
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#> 4 04 Recurrent Blood Derived Cancer - Bone Marrow TRBM
#> 5 05 Additional - New Primary TAP
#> 6 06 Metastatic TM

10.16.3 Curated molecular subtypes

Is there subtype data available in the MultiAssayExperiment obtained from curatedTCGAData?

Solution

The getSubtypeMap function will show actual variable names found in colData that contain subtype
information. This can only be obtained from MultiAssayExperiment objects provided by curatedTCGAData.
getSubtypeMap(acc)
#> ACC_annotations ACC_subtype
#> 1 Patient_ID SAMPLE
#> 2 histological_subtypes Histology
#> 3 mrna_subtypes C1A/C1B
#> 4 mrna_subtypes mRNA_K4
#> 5 cimp MethyLevel
#> 6 microrna_subtypes miRNA cluster
#> 7 scna_subtypes SCNA cluster
#> 8 protein_subtypes protein cluster
#> 9 integrative_subtypes COC
#> 10 mutation_subtypes OncoSign
head(colData(acc)$Histology)
#> [1] "Usual Type" "Usual Type" "Usual Type" "Usual Type" "Usual Type"
#> [6] "Usual Type"

10.16.4 Converting TCGA UUIDs to barcodes and back

TCGAutils provides a number of ID translation functions. These allow the user to translate from either file
or case UUIDs to TCGA barcodes and back. These functions work by querying the Genomic Data Commons
API via the GenomicDataCommons package (thanks to Sean Davis). These include:

• UUIDtoBarcode()
• barcodeToUUID()
• UUIDtoUUID()
• filenameToBarcode()

See the TCGAutils help pages for details.

10.16.5 Other TCGA data types

Helper functions to add TCGA exon files (legacy archive), copy number and GISTIC copy number calls to
MultiAssayExperiment objects are also available in TCGAutils.

10.17 Plotting, correlation, and other analyses

These provide exercises and solutions using the miniACC dataset.

http://bioconductor.org/packages/TCGAutils
http://bioconductor.org/packages/TCGAutils
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10.17.1 How many miniACC samples have data for each combination of assays?

Solution

The built-in upsetSamples creates an “upset” Venn diagram to answer this question:
upsetSamples(miniACC)
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In this dataset only 43 samples have all 5 assays, 32 are missing reverse-phase protein (RPPAArray), 2 are
missing Mutations, 1 is missing gistict, 12 have only mutations and gistict, etc.

10.17.2 Kaplan-meier plot stratified by pathology_N_stage

Create a Kaplan-meier plot, using pathology_N_stage as a stratifying variable.

Solution

The colData provides clinical data for things like a Kaplan-Meier plot for overall survival stratified by nodal
stage.
Surv(miniACC$days_to_death, miniACC$vital_status)
#> [1] 1355 1677 NA+ 423 365 NA+ 490 579 NA+ 922 551
#> [12] 1750 NA+ 2105 NA+ 541 NA+ NA+ 490 NA+ NA+ 562
#> [23] NA+ NA+ NA+ NA+ NA+ NA+ 289 NA+ NA+ NA+ 552
#> [34] NA+ NA+ NA+ 994 NA+ NA+ 498 NA+ NA+ 344 NA+
#> [45] NA+ NA+ NA+ NA+ NA+ NA+ NA+ NA+ NA+ 391 125
#> [56] NA+ 1852 NA+ NA+ NA+ NA+ NA+ NA+ NA+ 1204 159
#> [67] 1197 662 445 NA+ 2385 436 1105 NA+ 1613 NA+ NA+
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#> [78] 2405 NA+ NA+ NA+ NA+ NA+ 207 0 NA+ NA+ NA+
#> [89] NA+ NA+ NA+ 383

And remove any patients missing overall survival information:
miniACCsurv <- miniACC[, complete.cases(miniACC$days_to_death, miniACC$vital_status), ]
#> harmonizing input:
#> removing 248 sampleMap rows with 'colname' not in colnames of experiments
#> removing 58 colData rownames not in sampleMap 'primary'

fit <- survfit(Surv(days_to_death, vital_status) ~ pathology_N_stage, data = colData(miniACCsurv))
ggsurvplot(fit, data = colData(miniACCsurv), risk.table = TRUE)
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10.17.3 Multivariate Cox regression including RNA-seq, copy number, and
pathology

Choose the EZH2 gene for demonstration. This subsetting will drop assays with no row named EZH2:
wideacc = wideFormat(miniACC["EZH2", , ],

colDataCols=c("vital_status", "days_to_death", "pathology_N_stage"))
wideacc$y = Surv(wideacc$days_to_death, wideacc$vital_status)
head(wideacc)
#> DataFrame with 6 rows and 7 columns
#> primary vital_status days_to_death pathology_N_stage
#> <character> <integer> <integer> <character>
#> 1 TCGA-OR-A5J1 1 1355 n0
#> 2 TCGA-OR-A5J2 1 1677 n0
#> 3 TCGA-OR-A5J3 0 NA n0
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#> 4 TCGA-OR-A5J4 1 423 n1
#> 5 TCGA-OR-A5J5 1 365 n0
#> 6 TCGA-OR-A5J6 0 NA n0
#> RNASeq2GeneNorm_EZH2 gistict_EZH2 y
#> <numeric> <numeric> <Surv>
#> 1 75.8886 0 1355:1
#> 2 326.5332 1 1677:1
#> 3 190.194 1 NA:0
#> 4 NA -2 423:1
#> 5 366.3826 1 365:1
#> 6 30.7371 1 NA:0

Perform a multivariate Cox regression with EZH2 copy number (gistict), log2-transformed EZH2 expression
(RNASeq2GeneNorm), and nodal status (pathology_N_stage) as predictors:
coxph(Surv(days_to_death, vital_status) ~ gistict_EZH2 + log2(RNASeq2GeneNorm_EZH2) + pathology_N_stage,

data=wideacc)
#> Call:
#> coxph(formula = Surv(days_to_death, vital_status) ~ gistict_EZH2 +
#> log2(RNASeq2GeneNorm_EZH2) + pathology_N_stage, data = wideacc)
#>
#> coef exp(coef) se(coef) z p
#> gistict_EZH2 -0.0372 0.9635 0.2821 -0.13 0.89499
#> log2(RNASeq2GeneNorm_EZH2) 0.9773 2.6573 0.2811 3.48 0.00051
#> pathology_N_stagen1 0.3775 1.4586 0.5699 0.66 0.50774
#>
#> Likelihood ratio test=16.28 on 3 df, p=0.001
#> n= 26, number of events= 26
#> (66 observations deleted due to missingness)

We see that EZH2 expression is significantly associated with overal survival (p < 0.001), but EZH2 copy
number and nodal status are not. This analysis could easily be extended to the whole genome for discovery
of prognostic features by repeated univariate regressions over columns, penalized multivariate regression, etc.

For further detail, see the main MultiAssayExperiment vignette.

back to top

10.17.4 Correlation between RNA-seq and copy number

Part 1

For all genes where there is both recurrent copy number (gistict assay) and RNA-seq, calculate the correlation
between log2(RNAseq + 1) and copy number. Create a histogram of these correlations. Compare this with
the histogram of correlations between all unmatched gene - copy number pairs.

Solution

First, narrow down miniACC to only the assays needed:
subacc <- miniACC[, , c("RNASeq2GeneNorm", "gistict")]

Align the rows and columns, keeping only samples with both assays available:
subacc <- intersectColumns(subacc)
#> harmonizing input:
#> removing 15 sampleMap rows with 'colname' not in colnames of experiments
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#> removing 15 colData rownames not in sampleMap 'primary'
subacc <- intersectRows(subacc)

Create a list of numeric matrices:
subacc.list <- assays(subacc)

Log-transform the RNA-seq assay:
subacc.list[[1]] <- log2(subacc.list[[1]] + 1)

Transpose both, so genes are in columns:
subacc.list <- lapply(subacc.list, t)

Calculate the correlation between columns in the first matrix and columns in the second matrix:
corres <- cor(subacc.list[[1]], subacc.list[[2]])

And finally, create the histograms:
hist(diag(corres))
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Histogram of corres[upper.tri(corres)]
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Part 2

For the gene with highest correlation to copy number, make a box plot of log2 expression against copy
number.

Solution

First, identify the gene with highest correlation between expression and copy number:
which.max(diag(corres))
#> EIF4E
#> 91

You could now make the plot by taking the EIF4E columns from each element of the list subacc.list list that
was extracted from the subacc MultiAssayExperiment, but let’s do it by subsetting and extracting from the
MultiAssayExperiment:
df <- wideFormat(subacc["EIF4E", , ])
head(df)
#> DataFrame with 6 rows and 3 columns
#> primary RNASeq2GeneNorm_EIF4E gistict_EIF4E
#> <character> <numeric> <numeric>
#> 1 TCGA-OR-A5J1 460.6148 0
#> 2 TCGA-OR-A5J2 371.2252 0
#> 3 TCGA-OR-A5J3 516.0717 0
#> 4 TCGA-OR-A5J5 1129.3571 1
#> 5 TCGA-OR-A5J6 822.0782 0
#> 6 TCGA-OR-A5J7 344.5648 -1

boxplot(RNASeq2GeneNorm_EIF4E ~ gistict_EIF4E,
data=df, varwidth=TRUE,
xlab="GISTIC Relative Copy Number Call",
ylab="RNA-seq counts")
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10.17.5 Identifying correlated principal components

Perform Principal Components Analysis of each of the five assays, using samples available on each assay,
log-transforming RNA-seq data first. Using the first 10 components, calculate Pearson correlation between
all scores and plot these correlations as a heatmap to identify correlated components across assays.

Solution

Here’s a function to simplify doing the PCAs:
getLoadings <- function(x, ncomp=10, dolog=FALSE, center=TRUE, scale.=TRUE){

if(dolog){
x <- log2(x + 1)

}
pc = prcomp(x, center=center, scale.=scale.)
return(t(pc$rotation[, 1:10]))

}

Although it would be possible to do the following with a loop, the different data types do require different
options for PCA (e.g. mutations are a 0/1 matrix with 1 meaning there is a somatic mutation, and gistict varies
between -2 for homozygous loss and 2 for a genome doubling, so neither make sense to scale and center). So it
is just as well to do the following one by one, concatenating each PCA results to the MultiAssayExperiment:
miniACC2 <- intersectColumns(miniACC)
#> harmonizing input:
#> removing 170 sampleMap rows with 'colname' not in colnames of experiments
#> removing 49 colData rownames not in sampleMap 'primary'
miniACC2 <- c(miniACC2, rnaseqPCA=getLoadings(assays(miniACC2)[[1]], dolog=TRUE), mapFrom=1L)
#> Warning in .local(x, ...): Assuming column order in the data provided
#> matches the order in 'mapFrom' experiment(s) colnames
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miniACC2 <- c(miniACC2, gistictPCA=getLoadings(assays(miniACC2)[[2]], center=FALSE, scale.=FALSE), mapFrom=2L)
#> Warning in .local(x, ...): Assuming column order in the data provided
#> matches the order in 'mapFrom' experiment(s) colnames
miniACC2 <- c(miniACC2, proteinPCA=getLoadings(assays(miniACC2)[[3]]), mapFrom=3L)
#> Warning in .local(x, ...): Assuming column order in the data provided
#> matches the order in 'mapFrom' experiment(s) colnames
miniACC2 <- c(miniACC2, mutationsPCA=getLoadings(assays(miniACC2)[[4]], center=FALSE, scale.=FALSE), mapFrom=4L)
#> Warning in .local(x, ...): Assuming column order in the data provided
#> matches the order in 'mapFrom' experiment(s) colnames
miniACC2 <- c(miniACC2, miRNAPCA=getLoadings(assays(miniACC2)[[5]]), mapFrom=5L)
#> Warning in .local(x, ...): Assuming column order in the data provided
#> matches the order in 'mapFrom' experiment(s) colnames

Now subset to keep only the PCA results:
miniACC2 <- miniACC2[, , 6:10]
experiments(miniACC2)
#> ExperimentList class object of length 5:
#> [1] rnaseqPCA: matrix with 10 rows and 43 columns
#> [2] gistictPCA: matrix with 10 rows and 43 columns
#> [3] proteinPCA: matrix with 10 rows and 43 columns
#> [4] mutationsPCA: matrix with 10 rows and 43 columns
#> [5] miRNAPCA: matrix with 10 rows and 43 columns

Note, it would be equally easy (and maybe better) to do PCA on all samples available for each assay, then do
intersectColumns at this point instead.

Now, steps for calculating the correlations and plotting a heatmap: * Use wideFormat to paste these together,
which has the nice property of adding assay names to the column names. * The first column always contains
the sample identifier, so remove it. * Coerce to a matrix * Calculate the correlations, and take the absolute
value (since signs of principal components are arbitrary) * Set the diagonals to NA (each variable has a
correlation of 1 to itself).
df <- wideFormat(miniACC2)[, -1]
mycors <- cor(as.matrix(df))
mycors <- abs(mycors)
diag(mycors) <- NA

To simplify the heatmap, show only components that have at least one correlation greater than 0.5.
has.high.cor <- apply(mycors, 2, max, na.rm=TRUE) > 0.5
mycors <- mycors[has.high.cor, has.high.cor]
pheatmap::pheatmap(mycors)
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The highest correlation present is between PC2 of the RNA-seq assay, and PC1 of the protein assay.
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10.17.6 Annotating with ranges

This section doesn’t use the TCGAutils shortcuts, and is more generally applicable.

Convert all the ExperimentList elements in miniACC to RangedSummarizedExperiment objects. Then use
rowRanges to annotate these objects with genomic ranges. For the microRNA assay, annotate instead with
the genomic coordinates of predicted targets.

Solution

The following shortcut function takes a list of human gene symbols and uses AnnotationFilter and
EnsDb.Hsapiens.v86 to look up the ranges, and return these as a GRangesList which can be used to replace
the rowRanges of the SummarizedExperiment objects:
getrr <- function(identifiers, EnsDbFilterFunc=AnnotationFilter::SymbolFilter) {

edb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86
afl <- AnnotationFilterList(

EnsDbFilterFunc(identifiers),
SeqNameFilter(c(1:21, "X", "Y")),
TxBiotypeFilter("protein_coding"))

gr <- genes(edb, filter=afl)
grl <- split(gr, factor(identifiers))
grl <- grl[match(identifiers, names(grl))]
stopifnot(identical(names(grl), identifiers))
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return(grl)
}

For example:
getrr(rownames(miniACC)[[1]])
#> GRangesList object of length 198:
#> $DIRAS3
#> GRanges object with 1 range and 7 metadata columns:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <character>
#> ENSG00000116288 1 7954291-7985505 + | ENSG00000116288
#> gene_name gene_biotype seq_coord_system symbol
#> <character> <character> <character> <character>
#> ENSG00000116288 PARK7 protein_coding chromosome PARK7
#> entrezid tx_biotype
#> <list> <character>
#> ENSG00000116288 11315 protein_coding
#>
#> $MAPK14
#> GRanges object with 1 range and 7 metadata columns:
#> seqnames ranges strand | gene_id
#> ENSG00000116285 1 8004404-8026308 - | ENSG00000116285
#> gene_name gene_biotype seq_coord_system symbol
#> ENSG00000116285 ERRFI1 protein_coding chromosome ERRFI1
#> entrezid tx_biotype
#> ENSG00000116285 54206 protein_coding
#>
#> $YAP1
#> GRanges object with 1 range and 7 metadata columns:
#> seqnames ranges strand | gene_id
#> ENSG00000198793 1 11106535-11262507 - | ENSG00000198793
#> gene_name gene_biotype seq_coord_system symbol
#> ENSG00000198793 MTOR protein_coding chromosome MTOR
#> entrezid tx_biotype
#> ENSG00000198793 2475 protein_coding
#>
#> ...
#> <195 more elements>
#> -------
#> seqinfo: 22 sequences from GRCh38 genome

Use this to set the rowRanges of experiments 1-4 with these GRangesList objects
rseACC <- miniACC
withRSE <- c(1:3, 5)
for (i in withRSE){

rowRanges(rseACC[[i]]) <- getrr(rownames(rseACC[[i]]))
}

Note that the class of experiments 1-4 is now RangedSummarizedExperiment:
experiments(rseACC)
#> ExperimentList class object of length 5:
#> [1] RNASeq2GeneNorm: RangedSummarizedExperiment with 198 rows and 79 columns
#> [2] gistict: RangedSummarizedExperiment with 198 rows and 90 columns
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#> [3] RPPAArray: RangedSummarizedExperiment with 33 rows and 46 columns
#> [4] Mutations: matrix with 97 rows and 90 columns
#> [5] miRNASeqGene: RangedSummarizedExperiment with 471 rows and 80 columns

With ranged objects in the MultiAssayExperiment, you can then do subsetting by ranges. For example, select
all genes on chromosome 1 for the four rangedSummarizedExperiment objects:
rseACC[GRanges(seqnames="1:1-1e9"), , withRSE]
#> A MultiAssayExperiment object of 3 listed
#> experiments with user-defined names and respective classes.
#> Containing an ExperimentList class object of length 3:
#> [1] RNASeq2GeneNorm: RangedSummarizedExperiment with 22 rows and 79 columns
#> [2] gistict: RangedSummarizedExperiment with 22 rows and 90 columns
#> [3] RPPAArray: RangedSummarizedExperiment with 3 rows and 46 columns
#> Features:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample availability DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices

Note about microRNA: You can set ranges for the microRNA assay according to the genomic location of
those microRNA, or the locations of their predicted targets, but we don’t do it here. Assigning genomic
ranges of microRNA targets would be an easy way to subset them according to their targets.

back to top
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230: Cytoscape automation in R
using Rcy3

11.1 Overview

11.1.1 Instructor names and contact information

• Ruth Isserlin - ruth dot isserlin (at) utoronto (dot) ca
• Brendan Innes - brendan (dot) innes (at) mail (dot) utoronto (dot) ca
• Jeff Wong - jvwong (at) gmail (dot) com
• Gary Bader - gary (dot) bader (at) utoronto (dot) ca

11.1.2 Workshop Description

Cytoscape(www.cytoscape.org) is one of the most popular applications for network analysis and visualization.
In this workshop, we will demonstrate new capabilities to integrate Cytoscape into programmatic workflows
and pipelines using R. We will begin with an overview of network biology themes and concepts, and then
we will translate these into Cytoscape terms for practical applications. The bulk of the workshop will be
a hands-on demonstration of accessing and controlling Cytoscape from R to perform a network analysis of
tumor expression data.

11.1.3 Workshop prerequisites:

• Basic knowledge of R syntax
• Basic knowledge of Cytoscape software
• Familiarity with network biology concepts

11.1.4 Background:

• “How to visually interpret biological data using networks.” Merico D, Gfeller D, Bader GD. Nature
Biotechnology 2009 Oct 27, 921-924 - http://baderlab.org/Publications?action=AttachFile&do=view&
target=2009_Merico_Primer_NatBiotech_Oct.pdf

• “CyREST: Turbocharging Cytoscape Access for External Tools via a RESTful API”. Keiichiro Ono,
Tanja Muetze, Georgi Kolishovski, Paul Shannon, Barry Demchak.F1000Res. 2015 Aug 5;4:478. -
https://f1000research.com/articles/4-478/v1
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http://baderlab.org/Publications?action=AttachFile&do=view&target=2009_Merico_Primer_NatBiotech_Oct.pdf
http://baderlab.org/Publications?action=AttachFile&do=view&target=2009_Merico_Primer_NatBiotech_Oct.pdf
https://f1000research.com/articles/4-478/v1
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11.1.5 Workshop Participation

Participants are required to bring a laptop with Cytoscape, R, and RStudio installed. Installation instructions
will be provided in the weeks preceding the workshop. The workshop will consist of a lecture and lab.

11.1.6 R / Bioconductor packages used

• RCy3
• gProfileR
• RCurl
• EnrichmentBrowser

11.1.7 Time outline

Activity Time
Introduction 15m
Driving Cytoscape from R 15m
Creating, retrieving and manipulating networks 15m
Summary 10m

11.1.8 Workshop goals and objectives

Learning goals

• Know when and how to use Cytoscape in your research area
• Generalize network analysis methods to multiple problem domains
• Integrate Cytoscape into your bioinformatics pipelines

Learning objectives

• Programmatic control over Cytoscape from R
• Publish, share and export networks

11.2 Background

11.2.1 Cytoscape

• Cytoscape(Shannon et al. 2003) is a freely available open-source, cross platform network analysis
software.

• Cytoscape(Shannon et al. 2003) can visualize complex networks and help integrate them with any
other data type.

www.cytoscape.org
www.cytoscape.org
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• Cytoscape(Shannon et al. 2003) has an active developer and user base with more than 300 community
created apps available from the (Cytoscape App Store)[apps.cytoscape.org].

• Check out some of the tasks you can do with Cytoscape in our online tutorial guide - tutori-
als.cytoscape.org

11.2.2 Overview of network biology themes and concepts

11.2.2.1 Why Networks?

Networks are everywhere. . .

• Molecular Networks
• Cell-Cell communication Networks
• Computer networks
• Social Networks
• Internet

Networks are powerful tools. . .

• Reduce complexity
• More efficient than tables
• Great for data integration
• Intuitive visualization

Often data in our pipelines are represented as data.frames, tables, matrices, vectors or lists. Sometimes we
represent this data as heatmaps, or plots in efforts to summarize the results visually. Network visualization
offers an additional method that readily incorporates many different data types and variables into a single
picture.

In order to translate your data into a network it is important to define the entities and their relationships.
Entities and relationships can be anything. They can be user defined or they can be queried from a database.

Examples of Networks and their associated entities:

• Protein - Protein interaction network - is a directed or undirected network where nodes in the
network are proteins or genes and edges represent how those proteins interact.

• Gene - gene interaction network - nodes in the network are genes and edges can represent synthetic
lethality i.e. two genes have a connection if deleting both of them cause a decrease in fitness.

• Coexpression network - nodes in the network are genes or proteins and edges represent the degree of
co-expression the two genes have. Often the edges are associated with a correlation score (i.e. pearson
correlation) and edges are filtered by a defined threshold. If no threshold is specified all genes will be
connected to all other genes creating a hairball.

• Enrichment Map - nodes in the networks are groups of genes from pathways or functions (i.e. genesets)
and edges represent pathway crosstalk ( genes in common).

• Social network - nodes in the network are individuals and edges are some sort of social interaction
between two individuals, for example, friends on Facebook, linked in LinkedIN, . . .

• Copublication network - a specialization of the social network for research purposes. Nodes in
the network are individuals and edges between any two individuals for those who have co-authored a
publication together.

11.2.3 Networks as Tools

Networks can be used for two main purposes but often go hand in hand.

www.cytoscape.org
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Figure 11.1: Available Cytoscape Apps
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Figure 11.2: Translating data to networks
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Analysis

• Topological properties - including number of nodes, number of edges, node degree, average clustering
coefficients, shortest path lengths, density, and many more. Topological properties can help gain
insights into the structure and organization of the resulting biological networks as well as help highlight
specific node or regions of the network.

• Hubs and subnetworks - a hub is generally a highly connected node in a scale-free network. Removal of
hubs cause rapid breakdown of the underlying network. Subnetworks are interconnected regions of the
network and can be defined by any user defined parameter.

• Cluster, classify, and diffuse

• Data integration

Visualization

• Data overlays
• Layouts and animation
• Exploratory analysis
• Context and interpretation

11.3 Translating biological data into Cytoscape using RCy3

Networks offer us a useful way to represent our biological data. But how do we seamlessly translate our data
from R into Cytoscape?

There are multiple ways to communicate with Cytoscape programmatically. There are two main complementary
portals,cyRest(Ono et al. 2015) and Commands, that form the foundation. cyRest transforms Cytoscape
in to a REST (Representational State Transfer) enabled service where it essentially listens for events through
a predefined port (by default port 1234). The cyRest functionality started as an app add in but has now
been incorporated into the main release. Commands, on the other hand, offer a mechanism whereby app
developers can expose their functionality to other apps or to user through the command interface. Prior to
the implementation of cyRest many of the basic network functions were first available as commands so there
is some overlap between the two different methods. 11.3 shows the different ways you can call Cytoscape.

11.4 Set up

In order to create networks in Cytoscape from R you need:

• RCy3 - a biocondutor package
if(!"RCy3" %in% installed.packages()){

install.packages("BiocManager")
BiocManager::install("RCy3")

}
library(RCy3)

• Cytoscape - Download and install Cytoscape 3.6.1. or higher. Java 9 in not supported. Please make
sure that Java 8 is installed.

• Install additional cytoscape apps that will be used in this workshop. If using cytoscape 3.6.1 or older the
apps need to manually installed through the app manager in Cytoscape or through your web browser.
(click on the method to see detailed instructions)

cytoscape.org/download.php
http://manual.cytoscape.org/en/latest/App_Manager.html#installing-apps
https://apps.cytoscape.org/help/getstarted_app_install
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Figure 11.3: Different ways to communicate with Cytoscape
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– Functional Enrichment Collection -a collection of apps to retrieve networks and pathways, integrate
and explore the data, perform functional enrichment analysis, and interpret and display your
results.

– EnrichmentMap Pipeline Collection - a collection of apps including EnrichmentMap(Merico et
al. 2010), AutoAnnotate(Kucera et al. 2016), WordCloud(Oesper et al. 2011) and cluster-
Maker2(Morris et al. 2011) used to visualize and analysis enrichment results.

If you are using Cytoscape 3.7 or higher (Cytoscape 3.7 will be released in August 2018) then apps can be
installed directly from R.
#list of cytoscape apps to install
installation_responses <- c()

#list of app to install
cyto_app_toinstall <- c("clustermaker2", "enrichmentmap", "autoannotate", "wordcloud", "stringapp", "aMatReader")

cytoscape_version <- unlist(strsplit( cytoscapeVersionInfo()['cytoscapeVersion'],split = "\\."))
if(length(cytoscape_version) == 3 && as.numeric(cytoscape_version[1]>=3)

&& as.numeric(cytoscape_version[2]>=7)){
for(i in 1:length(cyto_app_toinstall)){

#check to see if the app is installed. Only install it if it hasn't been installed
if(!grep(commandsGET(paste("apps status app=\"", cyto_app_toinstall[i],"\"", sep="")),

pattern = "status: Installed")){
installation_response <-commandsGET(paste("apps install app=\"",

cyto_app_toinstall[i],"\"", sep=""))
installation_responses <- c(installation_responses,installation_response)

} else{
installation_responses <- c(installation_responses,"already installed")

}
}
installation_summary <- data.frame(name = cyto_app_toinstall,

status = installation_responses)

knitr::kable(list(installation_summary),
booktabs = TRUE, caption = 'A Summary of automated app installation'

)
}

Make sure that Cytoscape is open
cytoscapePing ()

11.4.1 Getting started

11.4.1.1 Confirm that Cytoscape is installed and opened

cytoscapeVersionInfo ()

http://apps.cytoscape.org/apps/functionalenrichmentcollection
http://apps.cytoscape.org/apps/enrichmentmappipelinecollection
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11.4.1.2 Browse available functions, commands and arguments

Depending on what apps you have installed there is different functionality available.

To see all the functions available in RCy3 package
help(package=RCy3)

Open swagger docs for live instances of CyREST API. The CyREST API list all the functions available in a
base distribution of cytoscape. The below command will launch the swagger documentation in a web browser.
Functions are clustered into categories. Expanding individual categories will show all the option available.
Further expanding an individual command will show detailed documentation for the function, input, outputs
and allow you to try and run the function. Running the function will show the url used for the query and all
returned responses.
cyrestAPI() # CyREST API

As mentioned above, there are two ways to interact with Cytoscape, through the Cyrest API or commands.
To see the available commands in swagger similar to the Cyrest API.
commandsAPI() # Commands API

To get information about an individual command from the R environment you can also use the commandsHelp
function. Simply specify what command you would like to get information on by adding its name to the
command. For example “commandsHelp(”help string“)”
commandsHelp("help")
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Table 11.2: A table of example nodes and edges.

id group score
node 0 A 20
node 1 A 10
node 2 B 15
node 3 B 5

source target interaction weight
node 0 node 1 inhibits 5.1
node 0 node 2 interacts 3.0
node 0 node 3 activates 5.2
node 2 node 3 interacts 9.9

11.5 Cytoscape Basics

Create a Cytoscape network from some basic R objects
nodes <- data.frame(id=c("node 0","node 1","node 2","node 3"),

group=c("A","A","B","B"), # categorical strings
score=as.integer(c(20,10,15,5)), # integers
stringsAsFactors=FALSE)

edges <- data.frame(source=c("node 0","node 0","node 0","node 2"),
target=c("node 1","node 2","node 3","node 3"),
interaction=c("inhibits","interacts","activates","interacts"), # optional
weight=c(5.1,3.0,5.2,9.9), # numeric
stringsAsFactors=FALSE)

createNetworkFromDataFrames(nodes,edges, title="my first network", collection="DataFrame Example")

Remember. All networks we make are created in Cytoscape so get an image of the resulting network and
include it in your current analysis if desired.
initial_network_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images","initial_example_network.png")

if(file.exists(initial_network_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
file.remove(initial_network_png_file_name)
}

#export the network
exportImage(initial_network_png_file_name, type = "png")
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Figure 11.4: Example network created from dataframe
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11.6 Example Data Set

We downloaded gene expression data from the Ovarian Serous Cystadenocarcinoma project of The Cancer
Genome Atlas (TCGA)(International Cancer Genome et al. 2010), http://cancergenome.nih.gov via the
Genomic Data Commons (GDC) portal(Grossman et al. 2016) on 2017-06-14 using TCGABiolinks R
package(Colaprico et al. 2016). The data includes 300 samples available as RNA-seq data, with reads mapped
to a reference genome using MapSplice(Wang et al. 2010) and read counts per transcript determined using
the RSEM method(B. Li and Dewey 2011). RNA-seq data are labeled as ‘RNA-Seq V2’, see details at:
https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2). The RNA-SeqV2 data consists of raw counts
similar to regular RNA-seq but RSEM (RNA-Seq by Expectation Maximization) data can be used with the
edgeR method. The expression dataset of 300 tumours, with 79 classified as Immunoreactive, 72 classified as
Mesenchymal, 69 classified as Differentiated, and 80 classified as Proliferative samples(class definitions were
obtained from Verhaak et al.(Verhaak et al. 2013) Supplementary Table 1, third column). RNA-seq read
counts were converted to CPM values and genes with CPM > 1 in at least 50 of the samples are retained
for further study (50 is the minimal sample size in the classes). The data was normalized and differential
expression was calculated for each cancer class relative to the rest of the samples.

There are two data files: 1. Expression matrix - containing the normalized expression for each gene across all
300 samples. 1. Gene ranks - containing the p-values, FDR and foldchange values for the 4 comparisons
(mesenchymal vs rest, differential vs rest, proliferative vs rest and immunoreactive vs rest)
RNASeq_expression_matrix <- read.table(

file.path(getwd(),"230_Isserlin_RCy3_intro","data","TCGA_OV_RNAseq_expression.txt"),
header = TRUE, sep = "\t", quote="\"", stringsAsFactors = FALSE)

RNASeq_gene_scores <- read.table(
file.path(getwd(),"230_Isserlin_RCy3_intro","data","TCGA_OV_RNAseq_All_edgeR_scores.txt"),

header = TRUE, sep = "\t", quote="\"", stringsAsFactors = FALSE)

11.7 Finding Network Data

How do I represent my data as a network?

Unfortunately, there is not a simple answer. It depends on your biological question!

Example use cases:

1. Omics data - I have a fill in the blank (microarray, RNASeq, Proteomics, ATACseq, MicroRNA, GWAS
. . . ) dataset. I have normalized and scored my data. How do I overlay my data on existing interaction
data?

2. Coexpression data - I have a dataset that represents relationships. How do I represent it as a network.
3. Omics data - I have a fill in the blank (microarray, RNASeq, Proteomics, ATACseq, MicroRNA, GWAS

. . . ) dataset. I have normalized and scored my data. I have run my data through a functional
enrichment tool and now have a set of enriched terms associated with my dataset. How do I represent
my functional enrichments as a network?

11.8 Use Case 1 - How are my top genes related?

Omics data - I have a fill in the blank (microarray, RNASeq, Proteomics, ATACseq, MicroRNA, GWAS . . . )
dataset. I have normalized and scored my data. How do I overlay my data on existing interaction data?

There are endless amounts of databases storing interaction data.

http://cancergenome.nih.gov
https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2
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Figure 11.5: Info graphic of some of the available pathway databases
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Thankfully we don’t have to query each independent ally. In addition to many specialized (for example, for
specific molecules, interaction type, or species) interaction databases there are also databases that collate
these databases to create a broad resource that is easier to use. For example:

• StringApp - is a protein - protein and protein- chemical database that imports data from
String(Szklarczyk et al. 2016) (which itself includes data from multiple species, coexpression,
text-mining,existing databases, and genomic context), [STITCH] into a unified, queriable database.

• PSICQUIC(Aranda et al. 2011) - a REST-ful service that is the responsibility of the database provider
to set up and maintain. PSICQUIC is an additional interface that allows users to search all available
databases (that support this REST-ful service). The databases are required to represent their interaction
data in Proteomic Standards Initiative - molecular interaction (PSI-MI) format. To see a list of all the
available data source see here

• nDex(Pratt et al. 2017) - a network data exchange repository.
• GeneMANIA(Mostafavi et al. 2008) - contains multiple networks (shared domains, physical interactions,

pathways, predicted, co-expression, genetic interactions and co-localized network). Given a set of genes
GeneMANIA selects and weights networks that optimize the connectivity between the query genes.
GeneMANIA will also return additional genes that are highly related to your query set.

• PathwayCommons - (access the data through the CyPath2App) is a pathway and interaction data
source. Data is collated from a large set of resources (list here ) and stored in the BioPAX(Demir
et al. 2010) format. BioPAX is a data standard that allows for detailed representation of pathway
mechanistic details as opposed to collapsing it to the set of interactions between molecules. BioPAX
pathways from Pathway commons can also be loaded directly into R using the PaxToolsR(Luna et al.
2015) Bioconductor package.

Get a subset of genes of interest from our scored data:
top_mesenchymal_genes <- RNASeq_gene_scores[which(RNASeq_gene_scores$FDR.mesen < 0.05 & RNASeq_gene_scores$logFC.mesen > 2),]
head(top_mesenchymal_genes)
#> Name geneid logFC.mesen logCPM.mesen LR.mesen PValue.mesen
#> 188 PRG4 10216 2.705305 2.6139056 95.58179 1.42e-22
#> 252 PROK1 84432 2.543381 1.3255202 68.31067 1.40e-16
#> 308 PRRX1 5396 2.077538 4.8570983 123.09925 1.33e-28
#> 434 PTGFR 5737 2.075707 -0.1960881 73.24646 1.14e-17
#> 438 PTGIS 5740 2.094198 5.8279714 165.11038 8.65e-38
#> 1214 BARX1 56033 3.267472 1.7427387 166.30064 4.76e-38
#> FDR.mesen logFC.diff logCPM.diff LR.diff PValue.diff FDR.diff
#> 188 7.34e-21 -1.2716521 2.6139056 14.107056 1.726950e-04 1.181751e-03
#> 252 4.77e-15 0.7455119 1.3255202 5.105528 2.384972e-02 6.549953e-02
#> 308 1.08e-26 -1.2367108 4.8570983 29.949104 4.440000e-08 1.250000e-06
#> 434 4.30e-16 -0.4233297 -0.1960881 2.318523 1.278413e-01 2.368387e-01
#> 438 1.20e-35 -0.4448761 5.8279714 5.696086 1.700278e-02 5.027140e-02
#> 1214 6.82e-36 -2.4411370 1.7427387 52.224346 4.950000e-13 6.970000e-11
#> Row.names.y logFC.immuno logCPM.immuno LR.immuno PValue.immuno
#> 188 PRG4|10216 -0.4980017 2.6139056 2.651951 0.103422901
#> 252 PROK1|84432 -1.9692994 1.3255202 27.876348 0.000000129
#> 308 PRRX1|5396 -0.4914091 4.8570983 5.773502 0.016269586
#> 434 PTGFR|5737 -0.6737143 -0.1960881 6.289647 0.012144523
#> 438 PTGIS|5740 -0.6138074 5.8279714 11.708780 0.000622059
#> 1214 BARX1|56033 -0.6063633 1.7427387 4.577141 0.032401228
#> FDR.immuno logFC.prolif logCPM.prolif LR.prolif PValue.prolif
#> 188 0.185548905 -0.9356510 2.6139056 8.9562066 0.0027652850
#> 252 0.000001650 -1.3195933 1.3255202 13.7675841 0.0002068750
#> 308 0.042062023 -0.3494185 4.8570983 2.9943819 0.0835537930
#> 434 0.033197211 -0.9786631 -0.1960881 12.9112727 0.0003266090
#> 438 0.002779895 -1.0355143 5.8279714 31.9162051 0.0000000161

http://apps.cytoscape.org/apps/stringapp
string-db.org
https://psicquic.github.io/
http://www.ebi.ac.uk/Tools/webservices/psicquic/registry/registry?action=STATUS
http://home.ndexbio.org/index/
http://genemania.org/
http://www.pathwaycommons.org/
http://apps.cytoscape.org/apps/cypath2
http://www.pathwaycommons.org/pc2/datasources
http://bioconductor.org/packages/release/bioc/html/paxtoolsr.html
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#> 1214 0.073565295 -0.2199714 1.7427387 0.6315171 0.4267993850
#> FDR.prolif
#> 188 0.006372597
#> 252 0.000622057
#> 308 0.128528698
#> 434 0.000932503
#> 438 0.000000107
#> 1214 0.510856262

We are going to query the String Database to get all interactions found for our set of top Mesenchymal genes.

Reminder: to see the parameters required by the string function or to find the right string function you can
use commandsHelp.
commandsHelp("help string")

commandsHelp("help string protein query")

mesen_string_interaction_cmd <- paste('string protein query taxonID=9606 limit=150 cutoff=0.9 query="',paste(top_mesenchymal_genes$Name, collapse=","),'"',sep="")
commandsGET(mesen_string_interaction_cmd)

Get a screenshot of the initial network
initial_string_network_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images", "initial_string_network.png")
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if(file.exists(initial_string_network_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
response <- file.remove(initial_string_network_png_file_name)

}

response <- exportImage(initial_string_network_png_file_name, type = "png")

Layout the network
layoutNetwork('force-directed')

Check what other layout algorithms are available to try out
getLayoutNames()

Get the parameters for a specific layout
getLayoutPropertyNames(layout.name='force-directed')

Re-layout the network using the force directed layout but specify some of the parameters
layoutNetwork('force-directed defaultSpringCoefficient=0.0000008 defaultSpringLength=70')

Get a screenshot of the re-laid out network
relayout_string_network_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images","relayout_string_network.png")

if(file.exists(relayout_string_network_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
response<- file.remove(relayout_string_network_png_file_name)
}

response <- exportImage(relayout_string_network_png_file_name, type = "png")
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Figure 11.6: Initial network returned by String from our set of Mesenchymal query genes
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Overlay our expression data on the String network.
To do this we will be using the loadTableData function from RCy3. It is important to make sure that that
your identifiers types match up. You can check what is used by String by pulling in the column names of the
node attribute table.
getTableColumnNames('node')

If you are unsure of what each column is and want to further verify the column to use you can also pull in
the entire node attribute table.
node_attribute_table_topmesen <- getTableColumns(table="node")
head(node_attribute_table_topmesen[,3:7])
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Figure 11.7: Initial network returned by String from our set of Mesenchymal query genes
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The column “display name” contains HGNC gene names which are also found in our Ovarian Cancer dataset.

To import our expression data we will match our dataset to the “display name” node attribute.
?loadTableData

loadTableData(RNASeq_gene_scores,table.key.column = "display name",data.key.column = "Name") #default data.frame key is row.names

Modify the Visual Style Create your own visual style to visualize your expression data on the String network.

Start with a default style
style.name = "MesenchymalStyle"
defaults.list <- list(NODE_SHAPE="ellipse",

NODE_SIZE=60,
NODE_FILL_COLOR="#AAAAAA",
EDGE_TRANSPARENCY=120)

node.label.map <- mapVisualProperty('node label','display name','p') # p for passthrough; nothing else needed
createVisualStyle(style.name, defaults.list, list(node.label.map))
setVisualStyle(style.name=style.name)

Update your created style with a mapping for the Mesenchymal logFC expression. The first step is to grab
the column data from Cytoscape (we can reuse the node_attribute table concept from above but we have to
call the function again as we have since added our expression data) and pull out the min and max to define
our data mapping range of values.

Note: you could define the min and max based on the entire dataset or just the subset that is represented in
Cytoscape currently. The two methods will give you different results. If you intend on comparing different
networks created with the same dataset then it is best to calculate the min and max from the entire dataset
as opposed to a subset.
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min.mesen.logfc = min(RNASeq_gene_scores$logFC.mesen,na.rm=TRUE)
max.mesen.logfc = max(RNASeq_gene_scores$logFC.mesen,na.rm=TRUE)
data.values = c(min.mesen.logfc,0,max.mesen.logfc)

Next, we use the RColorBrewer package to help us pick good colors to pair with our data values.
library(RColorBrewer)
display.brewer.all(length(data.values), colorblindFriendly=TRUE, type="div") # div,qual,seq,all

BrBG

PiYG

PRGn

PuOr

RdBu

RdYlBu

node.colors <- c(rev(brewer.pal(length(data.values), "RdBu")))

Map the colors to our data value and update our visual style.
setNodeColorMapping("logFC.mesen", data.values, node.colors, style.name=style.name)

Remember, String includes your query proteins as well as other proteins that associate with your query
proteins (including the strongest connection first). Not all of the proteins in this network are your top hits.
How can we visualize which proteins are our top Mesenchymal hits?

Add a different border color or change the node shape for our top hits.
getNodeShapes()

#select the Nodes of interest
#selectNode(nodes = top_mesenchymal_genes$Name, by.col="display name")
setNodeShapeBypass(node.names = top_mesenchymal_genes$Name, new.shapes = "TRIANGLE")

Change the size of the node to be correlated with the Mesenchymal p-value.
setNodeSizeMapping(table.column = 'LR.mesen',

table.column.values = c(min(RNASeq_gene_scores$LR.mesen),
mean(RNASeq_gene_scores$LR.mesen),
max(RNASeq_gene_scores$LR.mesen)),

sizes = c(30, 60, 150),mapping.type = "c", style.name = style.name)
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Get a screenshot of the resulting network
mesen_string_network_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images","mesen_string_network.png")

if(file.exists(mesen_string_network_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
response<- file.remove(mesen_string_network_png_file_name)
}

response <- exportImage(mesen_string_network_png_file_name, type = "png")

11.9 Use Case 2 - Which genes have similar expression.

Instead of querying existing resources look for correlations in your own dataset to find out which genes
have similar expression. There are many tools that can analyze your data for correlation. A popular tool
is Weighted Gene Correlation Network Analysis (WGCNA)(Langfelder and Horvath 2008) which takes
expression data and calculates functional modules. As a simple example we can transform our expression
dataset into a correlation matrix.

Using the Cytoscape App, aMatReader(Settle et al. 2018), we transform our adjacency matrix into an
interaction network. First we filter the correlation matrix to contain only the strongest connections (for
example, only correlations greater than 0.9).

RNASeq_expression <- RNASeq_expression_matrix[,3:ncol(RNASeq_expression_matrix)]

rownames(RNASeq_expression) <- RNASeq_expression_matrix$Name
RNAseq_correlation_matrix <- cor(t(RNASeq_expression), method="pearson")

#set the diagonal of matrix to zero - eliminate self-correlation
RNAseq_correlation_matrix[

row(RNAseq_correlation_matrix) == col(RNAseq_correlation_matrix) ] <- 0

# set all correlations that are less than 0.9 to zero
RNAseq_correlation_matrix[which(RNAseq_correlation_matrix<0.90)] <- 0

#get rid of rows and columns that have no correlations with the above thresholds
RNAseq_correlation_matrix <- RNAseq_correlation_matrix[which(rowSums(RNAseq_correlation_matrix) != 0),

which(colSums(RNAseq_correlation_matrix) !=0)]

#write out the correlation file
correlation_filename <- file.path(getwd(), "230_Isserlin_RCy3_intro", "data", "TCGA_OV_RNAseq_expression_correlation_matrix.txt")
write.table( RNAseq_correlation_matrix, file = correlation_filename, col.names = TRUE, row.names = FALSE, sep = "\t", quote=FALSE)

Use the CyRest call to access the aMatReader functionality.
amat_url <- "aMatReader/v1/import"
amat_params = list(files = list(correlation_filename),

delimiter = "TAB",
undirected = FALSE,
ignoreZeros = TRUE,
interactionName = "correlated with",
rowNames = FALSE
)

response <- cyrestPOST(operation = amat_url, body = amat_params, base.url = "http://localhost:1234")
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Figure 11.8: Formatted String network from our set of Mesenchymal query genes. Annotated with our
expressin data
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current_network_id <- response$data["suid"]

#relayout network
layoutNetwork('cose',

network = as.numeric(current_network_id))

renameNetwork(title = "Coexpression_network_pear0_95",
network = as.numeric(current_network_id))

Modify the visualization to see where each genes is predominantly expressed. Look at the 4 different p-values
associated with each gene and color the nodes with the type associated with the lowest FDR.

Load in the scoring data. Specify the cancer type where the genes has the lowest FDR value.
nodes_in_network <- rownames(RNAseq_correlation_matrix)

#add an additional column to the gene scores table to indicate in which samples
# the gene is significant
node_class <- vector(length = length(nodes_in_network),mode = "character")
for(i in 1:length(nodes_in_network)){

current_row <- which(RNASeq_gene_scores$Name == nodes_in_network[i])
min_pvalue <- min(RNASeq_gene_scores[current_row,

grep(colnames(RNASeq_gene_scores), pattern = "FDR")])
if(RNASeq_gene_scores$FDR.mesen[current_row] <=min_pvalue){

node_class[i] <- paste(node_class[i],"mesen",sep = " ")
}
if(RNASeq_gene_scores$FDR.diff[current_row] <=min_pvalue){

node_class[i] <- paste(node_class[i],"diff",sep = " ")
}
if(RNASeq_gene_scores$FDR.prolif[current_row] <=min_pvalue){

node_class[i] <- paste(node_class[i],"prolif",sep = " ")
}
if(RNASeq_gene_scores$FDR.immuno[current_row] <=min_pvalue){

node_class[i] <- paste(node_class[i],"immuno",sep = " ")
}

}
node_class <- trimws(node_class)
node_class_df <-data.frame(name=nodes_in_network, node_class,stringsAsFactors = FALSE)

head(node_class_df)
#> name node_class
#> 1 ABCA6 mesen
#> 2 ABCA8 mesen
#> 3 ABI3 immuno
#> 4 ACAN prolif
#> 5 ACAP1 immuno
#> 6 ADAM12 mesen

Map the new node attribute and the all the gene scores to the network.
loadTableData(RNASeq_gene_scores,table.key.column = "name",data.key.column = "Name") #default data.frame key is row.names

loadTableData(node_class_df,table.key.column = "name",data.key.column = "name") #default data.frame key is row.names

Create a color mapping for the different cancer types.
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#create a new mapping with the different types
unique_types <- sort(unique(node_class))

coul = brewer.pal(4, "Set1")

# I can add more tones to this palette :
coul = colorRampPalette(coul)(length(unique_types))

setNodeColorMapping(table.column = "node_class",table.column.values = unique_types,
colors = coul,mapping.type = "d")

correlation_network_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images","correlation_network.png")

if(file.exists(correlation_network_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
file.remove(correlation_network_png_file_name)
}

#export the network
exportImage(correlation_network_png_file_name, type = "png")

cluster the Network
#make sure it is set to the right network

setCurrentNetwork(network = getNetworkName(suid=as.numeric(current_network_id)))

#cluster the network
clustermaker_url <- paste("cluster mcl network=SUID:",current_network_id, sep="")
commandsGET(clustermaker_url)

#get the clustering results
default_node_table <- getTableColumns(table= "node",network = as.numeric(current_network_id))

head(default_node_table)

Perform pathway Enrichment on one of the clusters using g:Profiler(Reimand et al. 2016). g:Profiler is an
online functional enrichment web service that will take your gene list and return the set of enriched pathways.
For automated analysis g:Profiler has created an R library to interact with it directly from R instead of using
the web page.

Create a function to call g:Profiler and convert the returned results into a generic enrichment map input file.
tryCatch(expr = { library("gProfileR")},

error = function(e) { install.packages("gProfileR")}, finally = library("gProfileR"))

#function to run gprofiler using the gprofiler library
#
# The function takes the returned gprofiler results and formats it to the generic EM input file
#
# function returns a data frame in the generic EM file format.
runGprofiler <- function(genes,current_organism = "hsapiens",

significant_only = F, set_size_max = 200,
set_size_min = 3, filter_gs_size_min = 5 , exclude_iea = F){

gprofiler_results <- gprofiler(genes ,
significant=significant_only,ordered_query = F,
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Figure 11.9: Example correlation network created using aMatReader
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exclude_iea=exclude_iea,max_set_size = set_size_max,
min_set_size = set_size_min,
correction_method = "fdr",
organism = current_organism,

src_filter = c("GO:BP","REAC"))

#filter results
gprofiler_results <- gprofiler_results[which(gprofiler_results[,'term.size'] >= 3

& gprofiler_results[,'overlap.size'] >= filter_gs_size_min ),]

# gProfileR returns corrected p-values only. Set p-value to corrected p-value
if(dim(gprofiler_results)[1] > 0){

em_results <- cbind(gprofiler_results[,
c("term.id","term.name","p.value","p.value")], 1,
gprofiler_results[,"intersection"])

colnames(em_results) <- c("Name","Description", "pvalue","qvalue","phenotype","genes")

return(em_results)
} else {

return("no gprofiler results for supplied query")
}

}

Run g:Profiler. g:Profiler will return a set of pathways and functions that are found to be enriched in our
query set of genes.

current_cluster <- "1"
#select all the nodes in cluster 1
selectednodes <- selectNodes(current_cluster, by.col="__mclCluster")

#create a subnetwork with cluster 1
subnetwork_suid <- createSubnetwork(nodes="selected")

renameNetwork("Cluster1_Subnetwork", network=as.numeric(subnetwork_suid))

subnetwork_node_table <- getTableColumns(table= "node",network = as.numeric(subnetwork_suid))

em_results <- runGprofiler(subnetwork_node_table$name)

#write out the g:Profiler results
em_results_filename <-file.path(getwd(),

"230_Isserlin_RCy3_intro", "data",paste("gprofiler_cluster",current_cluster,"enr_results.txt",sep="_"))

write.table(em_results,em_results_filename,col.name=TRUE,sep="\t",row.names=FALSE,quote=FALSE)

head(em_results)
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Create an enrichment map with the returned g:Profiler results. An enrichment map is a different sort of
network. Instead of nodes representing genes, nodes represent pathways or functions. Edges between these
pathways or functions represent shared genes or pathway crosstalk. An enrichment map is a way to visualize
your enrichment results to help reduce redundancy and uncover main themes. Pathways can also be explored
in detail using the features available through the App in Cytoscape.
em_command = paste('enrichmentmap build analysisType="generic" ',

'pvalue=',"0.05", 'qvalue=',"0.05",
'similaritycutoff=',"0.25",
'coeffecients=',"JACCARD",
'enrichmentsDataset1=',em_results_filename ,
sep=" ")

#enrichment map command will return the suid of newly created network.
em_network_suid <- commandsRun(em_command)

renameNetwork("Cluster1_enrichmentmap", network=as.numeric(em_network_suid))

Export image of resulting Enrichment map.
cluster1em_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images","cluster1em.png")

if(file.exists(cluster1em_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
file.remove(cluster1em_png_file_name)
}

#export the network
exportImage(cluster1em_png_file_name, type = "png")

Annotate the Enrichment map to get the general themes that are found in the enrichment results of cluster 1

#get the column from the nodetable and node table
nodetable_colnames <- getTableColumnNames(table="node", network = as.numeric(em_network_suid))

descr_attrib <- nodetable_colnames[grep(nodetable_colnames, pattern = "_GS_DESCR")]
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Figure 11.10: Example Enrichment Map created when running an enrichment analysis using g:Profiler with
the genes that are part of cluster 1
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#Autoannotate the network
autoannotate_url <- paste("autoannotate annotate-clusterBoosted labelColumn=", descr_attrib," maxWords=3 ", sep="")

current_name <-commandsGET(autoannotate_url)

Export image of resulting Annotated Enrichment map.
cluster1em_annot_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images","cluster1em_annot.png")

if(file.exists(cluster1em_annot_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
file.remove(cluster1em_annot_png_file_name)
}

#export the network
exportImage(cluster1em_annot_png_file_name, type = "png")

Dense networks small or large never look like network figures we so often see in journals. A lot of manual
tweaking, reorganization and optimization is involved in getting that perfect figure ready network. The above
network is what the network starts as. The below figure is what it can look like after a few minutes of manual
reorganiazation. (individual clusters were selected from the auto annotate panel and separated from other
clusters)

11.10 Use Case 3 - Functional Enrichment of Omics set.

Reducing our large OMICs expression set to a simple list of genes eliminates the majority of the signals
present in the data. Thresholding will only highlight the strong signals neglecting the often more interesting
subtle signals. In order to capitalize on the wealth of data present in the data we need to perform pathway
enrichment analysis on the entire expression set. There are many tools in R or as standalone apps that
perform this type of analysis.

To demonstrate how you can use Cytoscape and RCy3 in your enrichment analysis pipeline we will use
EnrichmentBrowser package (as demonstrated in detail in the workshop Functional enrichment analysis of
high-throughput omics data) to perform pathway analysis.
if(!"EnrichmentBrowser" %in% installed.packages()){

install.packages("BiocManager")
BiocManager::install("EnrichmentBrowser")

}

suppressPackageStartupMessages(library(EnrichmentBrowser))

Download the latest pathway definition file from the Baderlab download site. Baderlab genesets are updated
on a monthly basis. Detailed information about the sources can be found here. Only Human, Mouse and Rat
gene set files are currently available on the Baderlab downloads site. If you are working with a species other
than human (and it is either rat or mouse) change the gmt_url below to correct species.
tryCatch(expr = { suppressPackageStartupMessages(library("RCurl"))},

error = function(e) { install.packages("RCurl")},
finally = library("RCurl"))

gmt_url = "http://download.baderlab.org/EM_Genesets/current_release/Human/symbol/"

#list all the files on the server

https://github.com/Bioconductor/BiocWorkshops/blob/master/Geistlinger_Omics.Rmd%5D
https://github.com/Bioconductor/BiocWorkshops/blob/master/Geistlinger_Omics.Rmd%5D
http://download.baderlab.org/EM_Genesets/current_release/
http://baderlab.org/GeneSets
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Figure 11.11: Example Annotated Enrichment Map created when running an enrichment analysis using
g:Profiler with the genes that are part of cluster 1
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Figure 11.12: Example Annotated Enrichment Map created when running an enrichment analysis using
g:Profiler with the genes that are part of cluster 1 after manual adjusting to generate a cleaner figure
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filenames = getURL(gmt_url)
tc = textConnection(filenames)
contents = suppressWarnings(readLines(tc))
close(tc)

#get the gmt that has all the pathways and does not include terms inferred from electronic annotations(IEA)
#start with gmt file that has pathways only
rx = gregexpr("(?<=<a href=\")(.*.GOBP_AllPathways_no_GO_iea.*.)(.gmt)(?=\">)",

contents, perl = TRUE)
gmt_file = unlist(regmatches(contents, rx))

dest_gmt_file <- file.path(getwd(), "230_Isserlin_RCy3_intro", "data", gmt_file)

download.file(
paste(gmt_url,gmt_file,sep=""),
destfile=dest_gmt_file

)

Load in the gmt file
baderlab.gs <- getGenesets(dest_gmt_file)
baderlab.gs[1:2]
#> $`THIO-MOLYBDENUM COFACTOR BIOSYNTHESIS%HUMANCYC%PWY-5963`
#> [1] "MOCOS"
#>
#> $`PROLINE BIOSYNTHESIS I%HUMANCYC%PROSYN-PWY`
#> [1] "PYCR2" "ALDH18A1" "PYCR1" "PYCRL"

Create the dataset required by EnrichmentBrowser tools

#create the expression file - A tab separated text file containing expression values. Columns = samples/subjects; rows = features/probes/genes; NO headers, row or column names.
expr <- RNASeq_expression

sumexpr_filename <- file.path(getwd(), "230_Isserlin_RCy3_intro","data","SummarizeExperiment_expression.txt")
write.table( expr , file = sumexpr_filename , col.names = FALSE, row.names = FALSE, sep = "\t", quote=FALSE)

rowData <- RNASeq_gene_scores[,grep(colnames(RNASeq_gene_scores), pattern="mesen")]
rowData <- cbind(RNASeq_gene_scores$Name,rowData)
colnames(rowData)[2] <- "FC"
colnames(rowData)[6] <- "ADJ.PVAL"

sumexpr_rdat_filename <- file.path(getwd(), "230_Isserlin_RCy3_intro","data","SummarizeExperiment_rdat.txt")
write.table( rowData[,1] , file = sumexpr_rdat_filename , col.names = FALSE, row.names = FALSE, sep = "\t", quote=FALSE)

#load in the data classification data
# A tab separated text file containing annotation information for the samples in either *two or three* columns. NO headers, row or column names. The number of rows/samples in this file should match the number of columns/samples of the expression matrix. The 1st column is reserved for the sample IDs; The 2nd column is reserved for a *BINARY* group assignment. Use '0' and '1' for unaffected (controls) and affected (cases) sample class
classDefinitions_RNASeq <- read.table(

file.path(getwd(), "230_Isserlin_RCy3_intro","data","RNASeq_classdefinitions.txt"), header = TRUE, sep = "\t", quote="\"", stringsAsFactors = FALSE)

colData <- data.frame(Sample = colnames(RNASeq_expression),
GROUP = classDefinitions_RNASeq$SUBTYPE,
stringsAsFactors = FALSE)

rownames(colData) <- colnames(RNASeq_expression)
colData$GROUP[which(colData$GROUP != "Mesenchymal")] <- 0
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colData$GROUP[which(colData$GROUP == "Mesenchymal")] <- 1

sumexpr_cdat_filename <- file.path(getwd(), "230_Isserlin_RCy3_intro","data","SummarizeExperiment_cdat.txt")
write.table( colData , file = sumexpr_cdat_filename , col.names = FALSE, row.names = FALSE, sep = "\t", quote=FALSE)

#create the Summarize Experiment object
se_OV <- EnrichmentBrowser::readSE(assay.file = sumexpr_filename , cdat.file = sumexpr_cdat_filename, rdat.file = sumexpr_rdat_filename)

Put our precomputed p-values and fold change values into the Summarized Experiment object so we can use
our rankings for the analysis

#set the Summarized Experiment to our computed p-values and FC
rowData(se_OV) <- rowData

Run basic Over representation analysis (ORA) using our ranked genes and our gene set file downloaded from
the Baderlab genesets.
ora.all <- sbea(method="ora", se=se_OV, gs=baderlab.gs, perm=0, alpha=0.05)
gsRanking(ora.all)
#> DataFrame with 967 rows and 4 columns
#> GENE.SET
#> <character>
#> 1 EXTRACELLULAR MATRIX ORGANIZATION%GOBP%GO:0030198
#> 2 HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION%MSIGDB_C2%HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
#> 3 EXTRACELLULAR STRUCTURE ORGANIZATION%GOBP%GO:0043062
#> 4 EXTRACELLULAR MATRIX ORGANIZATION%REACTOME%R-HSA-1474244.2
#> 5 NABA_CORE_MATRISOME%MSIGDB_C2%NABA_CORE_MATRISOME
#> ... ...
#> 963 OVULATION CYCLE%GOBP%GO:0042698
#> 964 NEGATIVE REGULATION OF TRANSPORT%GOBP%GO:0051051
#> 965 PEPTIDYL-TYROSINE MODIFICATION%GOBP%GO:0018212
#> 966 NEUTROPHIL DEGRANULATION%GOBP%GO:0043312
#> 967 PROCESSING OF CAPPED INTRON-CONTAINING PRE-MRNA%REACTOME DATABASE ID RELEASE 65%72203
#> NR.GENES NR.SIG.GENES P.VALUE
#> <numeric> <numeric> <numeric>
#> 1 195 147 6.42e-21
#> 2 193 145 2.07e-20
#> 3 223 160 5.43e-19
#> 4 239 163 6.1e-16
#> 5 215 145 1.03e-13
#> ... ... ... ...
#> 963 13 9 0.0487
#> 964 246 118 0.0488
#> 965 76 40 0.049
#> 966 416 194 0.0496
#> 967 213 103 0.0499
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Take the enrichment results and create a generic enrichment map input file so we can create an Enrichment
map. Description of format of the generic input file can be found here and example generic enrichment map
files can be found here

#manually adjust p-values
ora.all$res.tbl <- cbind(ora.all$res.tbl, p.adjust(ora.all$res.tbl$P.VALUE, "BH"))
colnames(ora.all$res.tbl)[ncol(ora.all$res.tbl)] <- "Q.VALUE"

#create a generic enrichment map file
em_results_mesen <- data.frame(name = ora.all$res.tbl$GENE.SET,descr = ora.all$res.tbl$GENE.SET,

pvalue=ora.all$res.tbl$P.VALUE, qvalue=ora.all$res.tbl$Q.VALUE, stringsAsFactors = FALSE)

#write out the ora results
em_results_mesen_filename <-file.path(getwd(),

"230_Isserlin_RCy3_intro","data","mesen_ora_enr_results.txt")

write.table(em_results_mesen,em_results_mesen_filename,col.name=TRUE,sep="\t",row.names=FALSE,quote=FALSE)

Create an enrichment map with the returned ORA results.
em_command = paste('enrichmentmap build analysisType="generic" ', "gmtFile=", dest_gmt_file,

'pvalue=',"0.05", 'qvalue=',"0.05",
'similaritycutoff=',"0.25",
'coeffecients=',"JACCARD",
'enrichmentsDataset1=',em_results_mesen_filename ,
sep=" ")

#enrichment map command will return the suid of newly created network.
em_mesen_network_suid <- commandsRun(em_command)

http://enrichmentmap.readthedocs.io/en/latest/FileFormats.html#generic-results-files
http://enrichmentmap.readthedocs.io/en/latest/FileFormats.html#examples-of-generic-enrichment-result-files
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renameNetwork("Mesenchymal_ORA_enrichmentmap", network=as.numeric(em_mesen_network_suid))

Export image of resulting Enrichment map.
mesenem_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro", "images","mesenem.png")

if(file.exists(mesenem_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
file.remove(mesenem_png_file_name)
}

#export the network
exportImage(mesenem_png_file_name, type = "png")

Annotate the Enrichment map to get the general themes that are found in the enrichment results. Often
for very busy networks annotating the networks doesn’t help to reduce the complexity but instead adds
to it. To get rid of some of the pathway redundancy and density in the network create a summary of the
underlying network. The summary network collapses each cluster to a summary node. Each summary node
is annotated with a word tag (the top 3 words associated with the nodes of the cluster) that is computed
using the Wordcloud app.

#get the column from the nodetable and node table
nodetable_colnames <- getTableColumnNames(table="node", network = as.numeric(em_mesen_network_suid))

descr_attrib <- nodetable_colnames[grep(nodetable_colnames, pattern = "_GS_DESCR")]

#Autoannotate the network
autoannotate_url <- paste("autoannotate annotate-clusterBoosted labelColumn=", descr_attrib," maxWords=3 ", sep="")

current_name <-commandsGET(autoannotate_url)

#create a summary network
commandsGET("autoannotate summary network='current'")

#change the network name
summary_network_suid <- getNetworkSuid()

renameNetwork(title = "Mesen_ORA_summary_netowrk",
network = as.numeric(summary_network_suid))

#get the summary node names
summary_nodes <- getTableColumns(table="node",columns=c("name"))

#clear bypass style the summary network has
clearNodePropertyBypass(node.names = summary_nodes$name,visual.property = "NODE_SIZE")

#relayout network
layoutNetwork('cose',

network = as.numeric(summary_network_suid))

Export image of resulting Summarized Annotated Enrichment map.
mesenem_summary_png_file_name <- file.path(getwd(),"230_Isserlin_RCy3_intro","images","mesenem_summary_network.png")

if(file.exists(mesenem_summary_png_file_name)){
#cytoscape hangs waiting for user response if file already exists. Remove it first
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Figure 11.13: Example Enrichment Map created when running an enrichment analysis using Enrichment-
Browser ORA with the genes differential in Mesenchymal OV
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file.remove(mesenem_summary_png_file_name)
}

#export the network
exportImage(mesenem_summary_png_file_name, type = "png")
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Figure 11.14: Example Annotated Enrichment Map created when running an enrichment analysis using
EnrichmentBrowser ORA with the genes that differential in mesenchymal OV
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Chapter 12

240: Fluent genomic data analysis
with plyranges

12.1 Instructor names and contact information

• Stuart Lee (lee.s@wehi.edu.au)
• Michael Lawrence (michafla@gmail.com)

12.2 Workshop Description

In this workshop, we will give an overview of how to perform low-level analyses of genomic data using the
grammar of genomic data transformation defined in the plyranges package. We will cover:

• introduction to GRanges
• overview of the core verbs for arithmetic, restriction, and aggregation of GRanges objects
• performing joins between GRanges objects
• designing pipelines to quickly explore data from AnnotationHub
• reading BAM and other file types as GRanges objects

The workshop will be a computer lab, in which the participants will be able to ask questions and interact
with the instructors.

12.2.1 Pre-requisites

This workshop is self-contained however familiarity with the following would be useful:

• plyranges vignette
• the GenomicRanges and IRanges packages
• tidyverse approaches to data analysis

12.2.2 Workshop Participation

Students will work through an Rmarkdown document while the instructors respond to any questions they
have.
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https://sa-lee.github.io/plyranges/articles/an-introduction.html
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12.2.3 R / Bioconductor packages used

• plyranges
• airway
• AnnotationHub
• GenomicRanges
• IRanges
• S4Vectors

12.2.4 Time outline

Activity Time
Overview of GRanges 5m
The plyranges grammar 20m
I/O and data pipelines 20m

12.3 Workshop goals and objectives

12.3.1 Learning goals

• Understand that GRanges follows tidy data principles
• Apply the plyranges grammar to genomic data analysis

12.3.2 Learning objectives

• Use AnnotationHub to find and summarise data
• Read files into R as GRanges objects
• Perform coverage analysis
• Build data pipelines for analysis based on GRanges

12.4 Workshop

12.5 Introduction

12.5.1 What is plyranges?

The plyranges package is a domain specific language (DSL) built on top of the IRanges and GenomicRanges
packages (Lee, Cook, and Lawrence (2018); Lawrence et al. (2013)). It is designed to quickly and coherently
analyse genomic data in the form of GRanges objects (more on those later!) and from a wide variety of
genomic data file types. For users who are familiar with the tidyverse, the grammar that plyranges implements
will look familiar but with a few modifications for genomic specific tasks.

12.5.2 Why use plyranges?

The grammar that plyranges develops is helpful for reasoning about genomics data analysis, and provides
a way of developing short readable analysis pipelines. We have tried to emphasise consistency and code
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readability by following the design principles outlined by Green and Petre (1996).

One of the goals of plyranges is to provide an alternative entry point to analysing genomics data with
Bioconductor, especially for R beginners and R users who are more familiar with the tidyverse approach to
data analysis. As a result, we have de-emphasised the use of more complicated data structures provided by
core Bioconductor packages that are useful for programming with.

12.5.3 Who is this workshop for?

This workshop is intended for new users of Bioconductor, users who are interested to learn about grammar
based approaches for data analysis, and users who are interested in learning how to use R to perform analyses
like those available in the command line packages BEDTools (Quinlan and Hall (2010)).

If that’s you, let’s begin!

12.6 Setup

To participate in this workshop you’ll need to have R >= 3.5 and install the plyranges, AnnotationHub,
and airway Bioconductor 3.7 packages (Morgan (2018); Love (2018)). You can achieve this by installing the
BiocManager package from CRAN, loading it then running the install command:
install.packages("BiocManager")
library(BiocManager)
install(c("plyranges", "AnnotationHub", "airway"))

12.7 What are GRanges objects?

The plyranges package is built on the core Bioconductor data structure GRanges. It is very similar to the
base R data.frame but with appropriate semantics for a genomics experiment: it has fixed columns for the
chromosome, start and end coordinates, and the strand, along with an arbitrary set of additional columns,
consisting of measurements or metadata specific to the data type or experiment (figure 12.1).

GRanges balances flexibility with formal constraints, so that it is applicable to virtually any genomic workflow,
while also being semantically rich enough to support high-level operations on genomic ranges. As a core data
structure, GRanges enables compatibility between plyranges and the rest of Bioconductor.

Since a GRanges object is similar to a data.frame, we can use plyranges to construct a GRanges object from
a data.frame. We’ll start by supposing we have a data.frame of genes from the yeast genome:
library(plyranges, quietly = TRUE)
genes <- data.frame(seqnames = "VI",

start = c(3322, 3030, 1437, 5066, 6426, 836),
end = c(3846, 3338, 2615, 5521, 7565, 1363),
strand = c("-", "-", "-", "+", "+", "+"),
gene_id=c("YFL064C", "YFL065C", "YFL066C",

"YFL063W", "YFL062W", "YFL067W"),
stringsAsFactors = FALSE)

gr <- as_granges(genes)
gr
#> GRanges object with 6 ranges and 1 metadata column:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <character>
#> [1] VI 3322-3846 - | YFL064C
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Figure 12.1: An illustration of a GRanges data object for a single sample from an RNA-seq experiment. The
core components of the object include a seqname column (representing the chromosome), a ranges column
which consists of start and end coordinates for a genomic region, and a strand identifier (either positive,
negative, or unstranded). Metadata are included as columns to the right of the dotted line as annotations
(gene-id) or range level covariates (score).

#> [2] VI 3030-3338 - | YFL065C
#> [3] VI 1437-2615 - | YFL066C
#> [4] VI 5066-5521 + | YFL063W
#> [5] VI 6426-7565 + | YFL062W
#> [6] VI 836-1363 + | YFL067W
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

The as_granges method takes a data.frame and allows you to quickly convert it to a GRanges object (and
can you can also specify which columns in the data.frame correspond to the columns in the GRanges).

A GRanges object follows tidy data principles: it is a rectangular table corresponding to a single biological
context (Wickham (2014)). Each row contains a single observation and each column is a variable describing
the observations. In the example above, each row corresponds to a single gene, and each column contains
information about those genes. As GRanges are tidy, we have constructed plyranges to follow and extend the
grammar in the R package dplyr.

12.8 The Grammar

Here we provide a quick overview of the functions available in plyranges and illustrate their use with some toy
examples (see 12.11 for an overview). In the final section we provide two worked examples (with exercises)
that show you can use plyranges to explore publicly available genomics data and perform coverage analysis of
BAM files.
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12.8.1 Core verbs

The plyranges grammar is simply a set of verbs that define actions to be performed on a GRanges (for a
complete list see the appendix). Verbs can be composed together using the pipe operator, %>%, which can be
read as ‘then’. Here’s a simple pipeline: first we will add two columns, one corresponding to the gene_type
and another with the GC content (which we make up by drawing from a uniform distribution). Second we
will remove genes if they have a width less than 400bp.
set.seed(2018-07-28)
gr2 <- gr %>%

mutate(gene_type = "ORF",
gc_content = runif(n())) %>%

filter(width > 400)
gr2
#> GRanges object with 5 ranges and 3 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 3322-3846 - | YFL064C ORF
#> [2] VI 1437-2615 - | YFL066C ORF
#> [3] VI 5066-5521 + | YFL063W ORF
#> [4] VI 6426-7565 + | YFL062W ORF
#> [5] VI 836-1363 + | YFL067W ORF
#> gc_content
#> <numeric>
#> [1] 0.49319754820317
#> [2] 0.216616344172508
#> [3] 0.747259315103292
#> [4] 0.907683959929273
#> [5] 0.221016310621053
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

The mutate() function is used to add columns, here we’ve added one column called gene_type where all
values are set to “ORF” (standing for open reading frame) and another called gc_content with random
uniform values. The n() operator returns the number of ranges in GRanges object, but can only be evaluated
inside of one of the plyranges verbs.

The filter() operation returns ranges if the expression evaluates to TRUE. Multiple expressions can be
composed together and will be evaluated as &
gr2 %>%

filter(strand == "+", gc_content > 0.5)
#> GRanges object with 2 ranges and 3 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 5066-5521 + | YFL063W ORF
#> [2] VI 6426-7565 + | YFL062W ORF
#> gc_content
#> <numeric>
#> [1] 0.747259315103292
#> [2] 0.907683959929273
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths
# is the same as using `&`
gr2 %>%
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filter(strand == "+" & gc_content > 0.5)
#> GRanges object with 2 ranges and 3 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 5066-5521 + | YFL063W ORF
#> [2] VI 6426-7565 + | YFL062W ORF
#> gc_content
#> <numeric>
#> [1] 0.747259315103292
#> [2] 0.907683959929273
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths
# but different from using or '|'
gr2 %>%

filter(strand == "+" | gc_content > 0.5)
#> GRanges object with 3 ranges and 3 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 5066-5521 + | YFL063W ORF
#> [2] VI 6426-7565 + | YFL062W ORF
#> [3] VI 836-1363 + | YFL067W ORF
#> gc_content
#> <numeric>
#> [1] 0.747259315103292
#> [2] 0.907683959929273
#> [3] 0.221016310621053
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Now that we have some measurements over our genes, we are most likely interested in performing the favourite
tasks of a biological data scientist: taking averages and counting. This is achieved with the summarise()
verb which will return a DataFrame object (Why is this the case?).
gr2 %>%

summarise(avg_gc = mean(gc_content),
n = n())

#> DataFrame with 1 row and 2 columns
#> avg_gc n
#> <numeric> <integer>
#> 1 0.517154695605859 5

which isn’t very exciting when performed without summarise()’s best friend the group_by() operator:
gr2 %>%

group_by(strand) %>%
summarise(avg_gc = mean(gc_content),

n = n())
#> DataFrame with 2 rows and 3 columns
#> strand avg_gc n
#> <Rle> <numeric> <integer>
#> 1 + 0.625319861884539 3
#> 2 - 0.354906946187839 2

The group_by() operator causes plyranges verbs to behave differently. Instead of acting on all the ranges in
a GRanges object, the verbs act within each group of ranges defined by the values in the grouping column(s).
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The group_by() operator does not change the appearance the of a GRanges object (well for the most part):
by_strand <- gr2 %>%

group_by(strand)
by_strand
#> GRanges object with 5 ranges and 3 metadata columns:
#> Groups: strand [2]
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 3322-3846 - | YFL064C ORF
#> [2] VI 1437-2615 - | YFL066C ORF
#> [3] VI 5066-5521 + | YFL063W ORF
#> [4] VI 6426-7565 + | YFL062W ORF
#> [5] VI 836-1363 + | YFL067W ORF
#> gc_content
#> <numeric>
#> [1] 0.49319754820317
#> [2] 0.216616344172508
#> [3] 0.747259315103292
#> [4] 0.907683959929273
#> [5] 0.221016310621053
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Now any verb we apply to our grouped GRanges, acts on each partition:
by_strand %>%

filter(n() > 2)
#> GRanges object with 3 ranges and 3 metadata columns:
#> Groups: strand [1]
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 5066-5521 + | YFL063W ORF
#> [2] VI 6426-7565 + | YFL062W ORF
#> [3] VI 836-1363 + | YFL067W ORF
#> gc_content
#> <numeric>
#> [1] 0.747259315103292
#> [2] 0.907683959929273
#> [3] 0.221016310621053
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths
by_strand %>%

mutate(avg_gc_strand = mean(gc_content))
#> GRanges object with 5 ranges and 4 metadata columns:
#> Groups: strand [2]
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 3322-3846 - | YFL064C ORF
#> [2] VI 1437-2615 - | YFL066C ORF
#> [3] VI 5066-5521 + | YFL063W ORF
#> [4] VI 6426-7565 + | YFL062W ORF
#> [5] VI 836-1363 + | YFL067W ORF
#> gc_content avg_gc_strand
#> <numeric> <numeric>
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#> [1] 0.49319754820317 0.354906946187839
#> [2] 0.216616344172508 0.354906946187839
#> [3] 0.747259315103292 0.625319861884539
#> [4] 0.907683959929273 0.625319861884539
#> [5] 0.221016310621053 0.625319861884539
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

To remove grouping use the ungroup() verb:
by_strand %>%

ungroup()
#> GRanges object with 5 ranges and 3 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 3322-3846 - | YFL064C ORF
#> [2] VI 1437-2615 - | YFL066C ORF
#> [3] VI 5066-5521 + | YFL063W ORF
#> [4] VI 6426-7565 + | YFL062W ORF
#> [5] VI 836-1363 + | YFL067W ORF
#> gc_content
#> <numeric>
#> [1] 0.49319754820317
#> [2] 0.216616344172508
#> [3] 0.747259315103292
#> [4] 0.907683959929273
#> [5] 0.221016310621053
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Finally, metadata columns can be selected using the select() verb:
gr2 %>%

select(gene_id, gene_type)
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 3322-3846 - | YFL064C ORF
#> [2] VI 1437-2615 - | YFL066C ORF
#> [3] VI 5066-5521 + | YFL063W ORF
#> [4] VI 6426-7565 + | YFL062W ORF
#> [5] VI 836-1363 + | YFL067W ORF
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths
# is the same as not selecting gc_content
gr2 %>%

select(-gc_content)
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 3322-3846 - | YFL064C ORF
#> [2] VI 1437-2615 - | YFL066C ORF
#> [3] VI 5066-5521 + | YFL063W ORF
#> [4] VI 6426-7565 + | YFL062W ORF
#> [5] VI 836-1363 + | YFL067W ORF
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#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths
# you can also select by metadata column index
gr2 %>%

select(1:2)
#> GRanges object with 5 ranges and 2 metadata columns:
#> seqnames ranges strand | gene_id gene_type
#> <Rle> <IRanges> <Rle> | <character> <character>
#> [1] VI 3322-3846 - | YFL064C ORF
#> [2] VI 1437-2615 - | YFL066C ORF
#> [3] VI 5066-5521 + | YFL063W ORF
#> [4] VI 6426-7565 + | YFL062W ORF
#> [5] VI 836-1363 + | YFL067W ORF
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

12.8.2 Verbs specific to GRanges

We have seen how you can perform restriction and aggregation on GRanges, but what about specific actions
for genomics data analysis, like arithmetic, nearest neighbours or finding overlaps?

12.8.2.1 Arithmetic

Arithmetic operations transform range coordinates, as defined by their start, end and width columns. These
three variables are mutually dependent so we have to take care when modifying them. For example, changing
the width column needs to change either the start, end or both to preserve integrity of the GRanges:
# by default setting width will fix the starting coordinate
gr %>%

mutate(width = width + 1)
#> GRanges object with 6 ranges and 1 metadata column:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <character>
#> [1] VI 3322-3847 - | YFL064C
#> [2] VI 3030-3339 - | YFL065C
#> [3] VI 1437-2616 - | YFL066C
#> [4] VI 5066-5522 + | YFL063W
#> [5] VI 6426-7566 + | YFL062W
#> [6] VI 836-1364 + | YFL067W
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

We introduce the anchor_direction() operator to clarify these modifications. Supported anchor points
include the start anchor_start(), end anchor_end() and midpoint anchor_center():
gr %>%

anchor_end() %>%
mutate(width = width * 2)

#> GRanges object with 6 ranges and 1 metadata column:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <character>
#> [1] VI 2797-3846 - | YFL064C
#> [2] VI 2721-3338 - | YFL065C
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#> [3] VI 258-2615 - | YFL066C
#> [4] VI 4610-5521 + | YFL063W
#> [5] VI 5286-7565 + | YFL062W
#> [6] VI 308-1363 + | YFL067W
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

gr %>%
anchor_center() %>%
mutate(width = width * 2)

#> GRanges object with 6 ranges and 1 metadata column:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <character>
#> [1] VI 3059-4108 - | YFL064C
#> [2] VI 2875-3492 - | YFL065C
#> [3] VI 847-3204 - | YFL066C
#> [4] VI 4838-5749 + | YFL063W
#> [5] VI 5856-8135 + | YFL062W
#> [6] VI 572-1627 + | YFL067W
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Note that the anchoring modifier introduces an important departure from the IRanges and GenomicRanges
packages: by default we ignore the strandedness of a GRanges object, and instead we provide verbs that
make stranded actions explicit. In this case of anchoring we provide the anchor_3p() and anchor_5p() to
perform anchoring on the 3’ and 5’ ends of a range.

The table in the appendix provides a complete list of arithmetic options available in plyranges.

12.8.2.2 Genomic aggregation

There are two verbs that can be used to aggregate over nearest neighbours: reduce_ranges() and
disjoin_ranges(). The reduce verb merges overlapping and neighbouring ranges:
gr %>% reduce_ranges()
#> GRanges object with 5 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] VI 836-1363 *
#> [2] VI 1437-2615 *
#> [3] VI 3030-3846 *
#> [4] VI 5066-5521 *
#> [5] VI 6426-7565 *
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

We could find out which genes are overlapping each other by aggregating over the gene_id column and storing
the result in a List column:
gr %>%

reduce_ranges(gene_id = List(gene_id))
#> GRanges object with 5 ranges and 1 metadata column:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <CharacterList>
#> [1] VI 836-1363 * | YFL067W
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#> [2] VI 1437-2615 * | YFL066C
#> [3] VI 3030-3846 * | YFL065C,YFL064C
#> [4] VI 5066-5521 * | YFL063W
#> [5] VI 6426-7565 * | YFL062W
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

The disjoin verb takes the union of end points over all ranges, and results in an expanded range
gr %>%

disjoin_ranges(gene_id = List(gene_id))
#> GRanges object with 7 ranges and 1 metadata column:
#> seqnames ranges strand | gene_id
#> <Rle> <IRanges> <Rle> | <CharacterList>
#> [1] VI 836-1363 * | YFL067W
#> [2] VI 1437-2615 * | YFL066C
#> [3] VI 3030-3321 * | YFL065C
#> [4] VI 3322-3338 * | YFL064C,YFL065C
#> [5] VI 3339-3846 * | YFL064C
#> [6] VI 5066-5521 * | YFL063W
#> [7] VI 6426-7565 * | YFL062W
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

You may have noticed that the resulting range are now unstranded, to take into account stranded features
use the directed prefix.

12.8.2.3 Overlaps

Another important class of operations for genomics data analysis is finding overlaps or nearest neighbours.
Here’s where we will introduce the plyranges join operators and the overlap aggregation operators.

Now let’s now suppose we have some additional measurements that we have obtained from a new experiment
on yeast. These measurements are for three different replicates and represent single nucleotide or insertion
deletion intensities from an array. Our collaborator has given us three different data.frames with the data but
they all have names inconsistent with the GRanges data structure. Our goal is to unify these into a single
GRanges object with column for each measurement and column for the sample identifier.

Here’s our data:
set.seed(66+105+111+99+49+56)

pos <- sample(1:10000, size = 100)
size <- sample(1:3, size = 100, replace = TRUE)
rep1 <- data.frame(chr = "VI",

pos = pos,
size = size,
X = rnorm(100, mean = 2),
Y = rnorm(100, mean = 1))

rep2 <- data.frame(chrom = "VI",
st = pos,
width = size,
X = rnorm(100, mean = 0.5, sd = 3),
Y = rnorm(100, sd = 2))



290 CHAPTER 12. 240: FLUENT GENOMIC DATA ANALYSIS WITH PLYRANGES

rep3 <- data.frame(chromosome = "VI",
start = pos,
width = size,
X = rnorm(100, mean = 2, sd = 3),
Y = rnorm(100, mean = 4, sd = 0.5))

For each replicate we want to construct a GRanges object:
# we can tell as_granges which columns in the data.frame
# are the seqnames, and range coordinates
rep1 <- as_granges(rep1, seqnames = chr, start = pos, width = size)
rep2 <- as_granges(rep2, seqnames = chrom, start = st)
rep3 <- as_granges(rep3, seqnames = chromosome)

And to construct our final GRanges object we can bind all our replicates together:
intensities <- bind_ranges(rep1, rep2, rep3, .id = "replicate")
# sort by the starting coordinate
arrange(intensities, start)
#> GRanges object with 300 ranges and 3 metadata columns:
#> seqnames ranges strand | X Y
#> <Rle> <IRanges> <Rle> | <numeric> <numeric>
#> [1] VI 99-100 * | 2.18077108319727 1.15893283880961
#> [2] VI 99-100 * | -1.14331853023759 -1.84545382593297
#> [3] VI 99-100 * | 4.42535734042167 3.53884540635964
#> [4] VI 110-111 * | 1.41581829875993 -0.262026041514519
#> [5] VI 110-111 * | 0.0203313104969627 -1.18095384044377
#> ... ... ... ... . ... ...
#> [296] VI 9671-9673 * | 0.756423808063998 -0.24544579405238
#> [297] VI 9671-9673 * | 0.715559817063897 4.6963376859667
#> [298] VI 9838-9839 * | 1.83836043312615 0.267996156074214
#> [299] VI 9838-9839 * | -4.62774336616852 -3.45271032367217
#> [300] VI 9838-9839 * | -0.285141455604857 4.16118336728783
#> replicate
#> <character>
#> [1] 1
#> [2] 2
#> [3] 3
#> [4] 1
#> [5] 2
#> ... ...
#> [296] 2
#> [297] 3
#> [298] 1
#> [299] 2
#> [300] 3
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Now we would like to filter our positions if they overlap one of the genes we have, one way we could achieve
this is with the filter_by_overlaps() operator:
olap <- filter_by_overlaps(intensities, gr)
olap
#> GRanges object with 108 ranges and 3 metadata columns:
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#> seqnames ranges strand | X Y
#> <Rle> <IRanges> <Rle> | <numeric> <numeric>
#> [1] VI 3300-3302 * | 2.26035109119553 1.06568454447289
#> [2] VI 1045-1047 * | 2.21864775104592 1.08876098679654
#> [3] VI 3791-3793 * | 2.64672161626967 1.49683387927811
#> [4] VI 6503 * | 2.97614069143102 -0.842974371427135
#> [5] VI 2613-2615 * | 0.829706619102562 1.00867596057383
#> ... ... ... ... . ... ...
#> [104] VI 2288 * | 4.51377823089056 3.98977444171162
#> [105] VI 7191 * | -3.91180888573709 5.0451068476909
#> [106] VI 5490 * | 6.8026659440345 4.71157047258809
#> [107] VI 5268-5270 * | -1.40753324511308 4.48936193681021
#> [108] VI 7333 * | -0.807795033496545 4.12171733927051
#> replicate
#> <character>
#> [1] 1
#> [2] 1
#> [3] 1
#> [4] 1
#> [5] 1
#> ... ...
#> [104] 3
#> [105] 3
#> [106] 3
#> [107] 3
#> [108] 3
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

Another option would be to perform a join operation. A join acts on two GRanges objects, a query and
a subject. The join operator retains the metadata from the query and subject ranges. All join operators
generate a set of hits based on overlap or proximity of ranges and use those hits to merge the two datasets in
different ways (figure 12.2, provides an overview of the overlap joins). We can further restrict the matching
by whether the query is completely within the subject, and adding the directed suffix ensures that matching
ranges have the same direction (strand).

Going back to our example, the overlap inner join will return all intensities that overlap a gene and propagate
which gene_id a given intensity belongs to:
olap <- join_overlap_inner(intensities, gr)

If we wanted to return all intensities regardless of overlap we could use the left join, and a missing value will
be propagated to the gene_id column if there isn’t any overlap.
join_overlap_left(intensities, gr)
#> GRanges object with 300 ranges and 4 metadata columns:
#> seqnames ranges strand | X Y
#> <Rle> <IRanges> <Rle> | <numeric> <numeric>
#> [1] VI 3300-3302 * | 2.26035109119553 1.06568454447289
#> [2] VI 1045-1047 * | 2.21864775104592 1.08876098679654
#> [3] VI 4206-4207 * | 3.08931723239393 2.4388720191285
#> [4] VI 3791-3793 * | 2.64672161626967 1.49683387927811
#> [5] VI 6503 * | 2.97614069143102 -0.842974371427135
#> ... ... ... ... . ... ...
#> [296] VI 8881-8882 * | 4.15079125018189 4.47576275354234
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Figure 12.2: Illustration of the three overlap join operators. Each join takes query and subject range as input
(black and light gray rectangles, respectively). An index for the join is computed, returning a Hits object,
which contains the indices of where the subject overlaps the query range. This index is used to expand
the query ranges by where it was ’hit’ by the subject ranges. The join semantics alter what is returned:
for an inner join the query range is returned for each match, for an intersect the intersection is taken
between overlapping ranges, and for a left join all query ranges are returned even if the subject range does
not overlap them. This principle is gnerally applied through the plyranges package for both overlaps and
nearest neighbour operations.
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#> [297] VI 7333 * | -0.807795033496545 4.12171733927051
#> [298] VI 715-716 * | -0.988759384492962 3.53496809806709
#> [299] VI 426-428 * | 10.5245928564545 3.52355010049711
#> [300] VI 9187-9188 * | 1.15204426681652 4.12867380190036
#> replicate gene_id
#> <character> <character>
#> [1] 1 YFL065C
#> [2] 1 YFL067W
#> [3] 1 <NA>
#> [4] 1 YFL064C
#> [5] 1 YFL062W
#> ... ... ...
#> [296] 3 <NA>
#> [297] 3 YFL062W
#> [298] 3 <NA>
#> [299] 3 <NA>
#> [300] 3 <NA>
#> -------
#> seqinfo: 2 sequences from an unspecified genome; no seqlengths

If we are interested in finding how much overlap there is we could use an intersect join. For example we could
compute the fraction of overlap of the genes with themselves:
gr %>%

mutate(gene_length = width) %>%
join_overlap_intersect(gr, suffix = c(".query", ".subject")) %>%
filter(gene_id.query != gene_id.subject) %>%
mutate(folap = width / gene_length)

#> GRanges object with 2 ranges and 4 metadata columns:
#> seqnames ranges strand | gene_id.query gene_length
#> <Rle> <IRanges> <Rle> | <character> <integer>
#> [1] VI 3322-3338 - | YFL064C 525
#> [2] VI 3322-3338 - | YFL065C 309
#> gene_id.subject folap
#> <character> <numeric>
#> [1] YFL065C 0.0323809523809524
#> [2] YFL064C 0.0550161812297735
#> -------
#> seqinfo: 1 sequence from an unspecified genome; no seqlengths

12.8.3 Exercises

There are of course many more functions available in plyranges but hopefully the previous examples are
sufficient to give you an idea of how to incorporate plyranges into your genomic workflows.

Here’s a few exercises to help you familiar with the verbs:

1. Find the average intensity of the X and Y measurements for each each replicate over all positions in the
intensities object

2. Add a new column to the intensities object that is the distance from each position to its closest gene
(hint IRanges::distance)

3. Find flanking regions downstream of the genes in gr that have width of 8bp (hint: type: flank_ and see
what comes up!)

4. Are any of the intensities positions within the flanking region? (use an overlap join to find out!)
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12.9 Data import and creating pipelines

Here we provide some realistic examples of using plyranges to import genomic data and perform exploratory
analyses.

12.9.1 Worked example: exploring BigWig files from AnnotationHub

In the workflow of ChIP-seq data analysis, we are often interested in finding peaks from islands of coverage
over a chromosome. Here we will use plyranges to explore ChiP-seq data from the Human Epigenome
Roadmap project Roadmap Epigenomics Consortium et al. (2015).

12.9.1.1 Extracting data from AnnotationHub

This data is available on Bioconductor’s AnnotationHub. First we construct an AnnotationHub, and then
query() for all bigWigFiles related to the project that correspond to the following conditions:

1. are from methylation marks (H3K4ME in the title)
2. correspond to primary T CD8+ memory cells from peripheral blood
3. correspond to unimputed log10 P-values

First we construct a hub that contains all references to the EpigenomeRoadMap data and extract the metadata
as a data.frame:
library(AnnotationHub)
library(magrittr)
ah <- AnnotationHub()
#> snapshotDate(): 2018-06-27
roadmap_hub <- ah %>%

query("EpigenomeRoadMap")

# extract2 is just a call to `[[`
metadata <- ah %>%

query("Metadata") %>%
extract2(names(.))

#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.AnnotationHub/47270'

head(metadata)
#> EID GROUP COLOR MNEMONIC
#> 1 E001 ESC #924965 ESC.I3
#> 2 E002 ESC #924965 ESC.WA7
#> 3 E003 ESC #924965 ESC.H1
#> 4 E004 ES-deriv #4178AE ESDR.H1.BMP4.MESO
#> 5 E005 ES-deriv #4178AE ESDR.H1.BMP4.TROP
#> 6 E006 ES-deriv #4178AE ESDR.H1.MSC
#> STD_NAME
#> 1 ES-I3 Cells
#> 2 ES-WA7 Cells
#> 3 H1 Cells
#> 4 H1 BMP4 Derived Mesendoderm Cultured Cells
#> 5 H1 BMP4 Derived Trophoblast Cultured Cells
#> 6 H1 Derived Mesenchymal Stem Cells
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#> EDACC_NAME ANATOMY TYPE
#> 1 ES-I3_Cell_Line ESC PrimaryCulture
#> 2 ES-WA7_Cell_Line ESC PrimaryCulture
#> 3 H1_Cell_Line ESC PrimaryCulture
#> 4 H1_BMP4_Derived_Mesendoderm_Cultured_Cells ESC_DERIVED ESCDerived
#> 5 H1_BMP4_Derived_Trophoblast_Cultured_Cells ESC_DERIVED ESCDerived
#> 6 H1_Derived_Mesenchymal_Stem_Cells ESC_DERIVED ESCDerived
#> AGE SEX SOLID_LIQUID ETHNICITY SINGLEDONOR_COMPOSITE
#> 1 CL Female <NA> <NA> SD
#> 2 CL Female <NA> <NA> SD
#> 3 CL Male <NA> <NA> SD
#> 4 CL Male <NA> <NA> SD
#> 5 CL Male <NA> <NA> SD
#> 6 CL Male <NA> <NA> SD

To find out the name of the sample corresponding to primary memory T-cells we can filter the data.frame.
We extract the sample ID corresponding to our filter.
primary_tcells <- metadata %>%

filter(ANATOMY == "BLOOD") %>%
filter(TYPE == "PrimaryCell") %>%
filter(EDACC_NAME == "CD8_Memory_Primary_Cells") %>%
extract2("EID") %>%
as.character()

primary_tcells
#> [1] "E048"

Now we can take our roadmap hub and query it based on our other conditions:
methylation_files <- roadmap_hub %>%

query("BigWig") %>%
query(primary_tcells) %>%
query("H3K4ME[1-3]") %>%
query("pval.signal")

methylation_files
#> AnnotationHub with 5 records
#> # snapshotDate(): 2018-06-27
#> # $dataprovider: BroadInstitute
#> # $species: Homo sapiens
#> # $rdataclass: BigWigFile
#> # additional mcols(): taxonomyid, genome, description,
#> # coordinate_1_based, maintainer, rdatadateadded, preparerclass,
#> # tags, rdatapath, sourceurl, sourcetype
#> # retrieve records with, e.g., 'object[["AH33454"]]'
#>
#> title
#> AH33454 | E048-H3K4me1.pval.signal.bigwig
#> AH33455 | E048-H3K4me3.pval.signal.bigwig
#> AH39974 | E048-H3K4me1.imputed.pval.signal.bigwig
#> AH40101 | E048-H3K4me2.imputed.pval.signal.bigwig
#> AH40228 | E048-H3K4me3.imputed.pval.signal.bigwig

So we’ll take the first two entries and download them as BigWigFiles:
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bw_files <- lapply(c("AH33454", "AH33455"), function(id) ah[[id]])
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.AnnotationHub/38894'
#> downloading 0 resources
#> loading from cache
#> '/home/mramos//.AnnotationHub/38895'
names(bw_files) <- c("HK34ME1", "HK34ME3")

We have our desired BigWig files so now we can we can start analysing them.

12.9.1.2 Reading BigWig files

For this analysis, we will call peaks from islands of scores over chromosome 10.

First, we extract the genome information from the first BigWig file and filter to get the range for chromosome
10. This range will be used as a filter when reading the file.
chr10_ranges <- bw_files %>%

extract2(1L) %>%
get_genome_info() %>%
filter(seqnames == "chr10")

Then we read the BigWig file only extracting scores if they overlap chromosome 10. We also add the genome
build information to the resulting ranges. This book-keeping is good practice as it ensures the integrity of
any downstream operations such as finding overlaps.
# a function to read our bigwig files
read_chr10_scores <- function(file) {

read_bigwig(file, overlap_ranges = chr10_ranges) %>%
set_genome_info(genome = "hg19")

}
# apply the function to each file
chr10_scores <- lapply(bw_files, read_chr10_scores)
# bind the ranges to a single GRAnges object
# and add a column to identify the ranges by signal type
chr10_scores <- bind_ranges(chr10_scores, .id = "signal_type")
chr10_scores
#> GRanges object with 11268683 ranges and 2 metadata columns:
#> seqnames ranges strand | score
#> <Rle> <IRanges> <Rle> | <numeric>
#> [1] chr10 1-60612 * | 0.0394200012087822
#> [2] chr10 60613-60784 * | 0.154219999909401
#> [3] chr10 60785-60832 * | 0.354730010032654
#> [4] chr10 60833-61004 * | 0.154219999909401
#> [5] chr10 61005-61455 * | 0.0394200012087822
#> ... ... ... ... . ...
#> [11268679] chr10 135524731-135524739 * | 0.0704099982976913
#> [11268680] chr10 135524740-135524780 * | 0.132530003786087
#> [11268681] chr10 135524781-135524789 * | 0.245049998164177
#> [11268682] chr10 135524790-135524811 * | 0.450120002031326
#> [11268683] chr10 135524812-135524842 * | 0.619729995727539
#> signal_type
#> <character>
#> [1] HK34ME1
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#> [2] HK34ME1
#> [3] HK34ME1
#> [4] HK34ME1
#> [5] HK34ME1
#> ... ...
#> [11268679] HK34ME3
#> [11268680] HK34ME3
#> [11268681] HK34ME3
#> [11268682] HK34ME3
#> [11268683] HK34ME3
#> -------
#> seqinfo: 25 sequences from hg19 genome

Since we want to call peaks over each signal type, we will create a grouped GRanges object:
chr10_scores_by_signal <- chr10_scores %>%

group_by(signal_type)

We can then filter to find the coordinates of the peak containing the maximum score for each signal. We can
then find a 5000 nt region centred around the maximum position by anchoring and modifying the width.
chr10_max_score_region <- chr10_scores_by_signal %>%

filter(score == max(score)) %>%
ungroup() %>%
anchor_center() %>%
mutate(width = 5000)

Finally, the overlap inner join is used to restrict the chromosome 10 coverage islands, to the islands that are
contained in the 5000nt region that surrounds the max peak for each signal type.
peak_region <- chr10_scores %>%

join_overlap_inner(chr10_max_score_region) %>%
filter(signal_type.x == signal_type.y)

# the filter ensures overlapping correct methlyation signal

12.9.1.3 Exercises

1. Use the reduce_ranges() function to find all peaks for each signal type.
2. How could you annotate the scores to find out which genes overlap each peak found in 1.?
3. Plot a 1000nt window centred around the maximum scores for each signal type using the ggbio or Gviz

package.

12.9.2 Worked example: coverage analysis of BAM files

A common quality control check in a genomics workflow is to perform coverage analysis over features of
interest or over the entire genome (again we see the bioinformatician’s love of counting things). Here we use
the airway package to compute coverage histograms and show how you can read BAM files into memory as
GRanges objects with plyranges.

First let’s gather all the BAM files available to use in airway (see browseVignettes("airway") for more
information about the data and how it was prepared):
bfs <- system.file("extdata", package = "airway") %>%

dir(pattern = ".bam",
full.names = TRUE)
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# get sample names (everything after the underscore)
names(bfs) <- bfs %>%

basename() %>%
sub("_[^_]+$", "", .)

To start let’s look at a single BAM file, we can compute the coverage of the alignments over all contigs in the
BAM as follows:
first_bam_cvg <- bfs %>%

extract2(1) %>%
compute_coverage()

first_bam_cvg
#> GRanges object with 11423 ranges and 1 metadata column:
#> seqnames ranges strand | score
#> <Rle> <IRanges> <Rle> | <integer>
#> [1] 1 1-11053772 * | 0
#> [2] 1 11053773-11053835 * | 1
#> [3] 1 11053836-11053839 * | 0
#> [4] 1 11053840-11053902 * | 1
#> [5] 1 11053903-11067865 * | 0
#> ... ... ... ... . ...
#> [11419] GL000210.1 1-27682 * | 0
#> [11420] GL000231.1 1-27386 * | 0
#> [11421] GL000229.1 1-19913 * | 0
#> [11422] GL000226.1 1-15008 * | 0
#> [11423] GL000207.1 1-4262 * | 0
#> -------
#> seqinfo: 84 sequences from an unspecified genome

Here the coverage is computed without the entire BAM file being read into memory. Notice that the score
here is the count of the number of alignments that cover a given range. To compute a coverage histogram,
that is the number of number of bases that have a given coverage score for each contig we can simply use
summarise():
first_bam_cvg %>%

group_by(seqnames, score) %>%
summarise(n_bases_covered = sum(width))

#> DataFrame with 277 rows and 3 columns
#> seqnames score n_bases_covered
#> <Rle> <integer> <integer>
#> 1 1 0 249202844
#> 2 10 0 135534747
#> 3 11 0 135006516
#> 4 12 0 133851895
#> 5 13 0 115169878
#> ... ... ... ...
#> 273 1 189 3
#> 274 1 191 3
#> 275 1 192 3
#> 276 1 193 2
#> 277 1 194 1

For RNA-seq experiments we are often interested in splitting up alignments based on whether the alignment
has skipped a region from the reference ( that is, there is an “N” in the cigar string, indicating an intron).

In plyranges this can be achieved with the chop_by_introns(), that will split up an alignment if there’s an
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intron. This results in a grouped ranges object.

To begin we can read the BAM file using read_bam(), this does not read the entire BAM into memory but
instead waits for further functions to be applied to it.
# no index present in directory so we use index = NULL
split_bam <- bfs %>%

extract2(1) %>%
read_bam(index = NULL)

# nothing has been read
split_bam
#> DeferredGenomicRanges object with 0 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> -------
#> seqinfo: no sequences

For example we can select elements from the BAM file to be included in the resulting GRanges to load
alignments into memory:
split_bam %>%

select(flag)
#> DeferredGenomicRanges object with 14282 ranges and 4 metadata columns:
#> seqnames ranges strand | flag cigar
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] 1 11053773-11053835 + | 99 63M
#> [2] 1 11053840-11053902 - | 147 63M
#> [3] 1 11067866-11067928 + | 163 63M
#> [4] 1 11067931-11067993 - | 83 63M
#> [5] 1 11072708-11072770 + | 99 63M
#> ... ... ... ... . ... ...
#> [14278] 1 11364733-11364795 - | 147 63M
#> [14279] 1 11365866-11365928 + | 163 63M
#> [14280] 1 11365987-11366049 - | 83 63M
#> [14281] 1 11386063-11386123 + | 99 2S61M
#> [14282] 1 11386132-11386194 - | 147 63M
#> qwidth njunc
#> <integer> <integer>
#> [1] 63 0
#> [2] 63 0
#> [3] 63 0
#> [4] 63 0
#> [5] 63 0
#> ... ... ...
#> [14278] 63 0
#> [14279] 63 0
#> [14280] 63 0
#> [14281] 63 0
#> [14282] 63 0
#> -------
#> seqinfo: 84 sequences from an unspecified genome

Finally, we can split our alignments using the chop_by_introns():
split_bam <- split_bam %>%

chop_by_introns()
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split_bam
#> GRanges object with 18124 ranges and 4 metadata columns:
#> Groups: introns [14282]
#> seqnames ranges strand | cigar qwidth
#> <Rle> <IRanges> <Rle> | <character> <integer>
#> [1] 1 11053773-11053835 + | 63M 63
#> [2] 1 11053840-11053902 - | 63M 63
#> [3] 1 11067866-11067928 + | 63M 63
#> [4] 1 11067931-11067993 - | 63M 63
#> [5] 1 11072708-11072770 + | 63M 63
#> ... ... ... ... . ... ...
#> [18120] 1 11364733-11364795 - | 63M 63
#> [18121] 1 11365866-11365928 + | 63M 63
#> [18122] 1 11365987-11366049 - | 63M 63
#> [18123] 1 11386063-11386123 + | 2S61M 63
#> [18124] 1 11386132-11386194 - | 63M 63
#> njunc introns
#> <integer> <integer>
#> [1] 0 1
#> [2] 0 2
#> [3] 0 3
#> [4] 0 4
#> [5] 0 5
#> ... ... ...
#> [18120] 0 14278
#> [18121] 0 14279
#> [18122] 0 14280
#> [18123] 0 14281
#> [18124] 0 14282
#> -------
#> seqinfo: 84 sequences from an unspecified genome
# look at all the junction reads
split_bam %>%

filter(n() >= 2)
#> GRanges object with 7675 ranges and 4 metadata columns:
#> Groups: introns [3833]
#> seqnames ranges strand | cigar qwidth
#> <Rle> <IRanges> <Rle> | <character> <integer>
#> [1] 1 11072744-11072800 + | 57M972N6M 63
#> [2] 1 11073773-11073778 + | 57M972N6M 63
#> [3] 1 11072745-11072800 - | 56M972N7M 63
#> [4] 1 11073773-11073779 - | 56M972N7M 63
#> [5] 1 11072746-11072800 + | 55M972N8M 63
#> ... ... ... ... . ... ...
#> [7671] 1 11345701-11345716 + | 47M11583N16M 63
#> [7672] 1 11334089-11334117 - | 29M11583N34M 63
#> [7673] 1 11345701-11345734 - | 29M11583N34M 63
#> [7674] 1 11334109-11334117 - | 9M11583N54M 63
#> [7675] 1 11345701-11345754 - | 9M11583N54M 63
#> njunc introns
#> <integer> <integer>
#> [1] 1 11
#> [2] 1 11
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#> [3] 1 12
#> [4] 1 12
#> [5] 1 13
#> ... ... ...
#> [7671] 1 13913
#> [7672] 1 13915
#> [7673] 1 13915
#> [7674] 1 13916
#> [7675] 1 13916
#> -------
#> seqinfo: 84 sequences from an unspecified genome

12.9.2.1 Exercises

1. Compute the total depth of coverage across all features.
2. How could you compute the proportion of bases covered over an entire genome? (hint: get_genome_info

and S4Vectors::merge)
3. How could you compute the strand specific genome wide coverage?
4. Create a workflow for computing the strand specific coverage for all BAM files.
5. For each sample plot total breadth of coverage against the number of bases covered faceted by each

sample name.

12.10 What’s next?

The grammar based approach for analysing data provides a consistent approach for analysing genomics
experiments with Bioconductor. We have explored how plyranges can enable you to perform common analysis
tasks required of a bioinformatician. As plyranges is still a new and growing package, there is definite room
for improvement (and likely bugs), if you have any problems using it or think things could be easier or clearer
please file an issue on github. Contributions from the Bioconductor community are also more than welcome!

12.11 Appendix

Table 12.2: Overview of the plyranges grammar. The core verbs are
briefly described and categorised into one of: aggregation, unary or
binary arithmetic, merging, modifier, or restriction. A verb is given
bold text if its origin is from the dplyr grammar.

Category Verb Description
summarise() aggregate over column(s)

Aggregation disjoin_ranges() aggregate column(s) over the union of end coordinates
reduce_ranges() aggregate column(s) by merging overlapping and neighbouring ranges

mutate() modifies any column
select() select columns

Arithmetic (Unary) arrange() sort by columns
stretch() extend range by fixed amount

shift_(direction) shift coordinates
flank_(direction) generate flanking regions
%intersection% row-wise intersection

https://github.com/sa-lee/plyranges
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Category Verb Description
%union% row-wise union

compute_coverage coverage over all ranges
Arithmetic (Binary) %setdiff% row-wise set difference

between() row-wise gap range
span() row-wise spanning range

join_overlap_() merge by overlapping ranges
join_nearest merge by nearest neighbour ranges
join_follow merge by following ranges

Merging join_precedes merge by preceding ranges
union_ranges range-wise union

intersect_ranges range-wise intersect
setdiff_ranges range-wise set difference

complement_ranges range-wise union
anchor_direction() fix coordinates at direction

Modifier group_by() partition by column(s)
group_by_overlaps() partition by overlaps

filter() subset rows
Restriction filter_by_overlaps() subset by overlap

filter_by_non_overlaps() subset by no overlap



Chapter 13

250: Working with genomic data in R
with the DECIPHER package

Authors: Nicholas Cooley1 Last Modified: 18 July, 2018

13.1 Overview

13.1.1 Workshop Description

In this workshop we will give an introduction to working with biological sequence data in R using the
Biostrings and DECIPHER packages. We will cover:

• Importing, viewing, and manipulating genomes in R
• Construction of sequence databases for organizing genomes
• Mapping syntenic regions between genomes with the FindSynteny function
• Understanding, accessing, and viewing objects of class Synteny
• Using syntenic information to predict orthologous genes
• Alignment of sequences and genomes with DECIPHER
• Downstream analyses enabled by syntenic mapping

13.1.2 Pre-requisites

• Familiarity with Biostrings
• Familiarity with DECIPHER Databases2

13.1.3 Workshop Participation

This will be a lab where participants follow along on their computers.

13.1.4 R / Bioconductor packages used

• Biostrings
1University of Pittsburgh
2Wright, E. S. The R Journal 2016, 8 (1), 352–359.
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• DECIPHER
• stringr
• FindHomology

13.1.5 Time outline

Activity Time
Packages/Introduction 5m
Basic commands for sequences 5m
Sequence databases 10m
Demonstration of synteny mapping 10m
Explanation of function arguments 10m
Dissecting Synteny objects 10m
Visualization of syntenic blocks 10m
Alignment of syntenic regions 10m
Ortholog prediction from Synteny 10m
Constructing phylogenetic trees 10m

13.2 Workshop goals and objectives

13.2.1 Learning goals

• Understand a simple workflow for analysis of sequences in R and DECIPHER
• Learn the basic use and appropriate application of functions within DECIPHER

13.2.2 Learning objectives

• Learn basic commands for working with sequences in R
• Import genomes from online repositories or local files
• Map synteny between genomes
• Analyze a synteny map among multiple genomes
• Develop an understanding of the data structures involved
• Predict orthologs from syntenic maps
• Select core and pan genomes from predicted orthologs
• Construct and interpret phylogenetic trees

13.2.2.1 Introduction

In this worshop we will be walking through a comparative genomics pipeline using functions within the R
package DECIPHER, and within a package that is currently under construction under the name FindHomology.

13.2.2.2 Context

Lipid membranes are ubiquitious in living organisms, however the individual lipid molecules that compose
membranes have a wide variety of structures. The biosynthesis of common lipid molecules is well understood,
conversely the biosynthesis of more exotic lipid molecules is not. The genomes selected today are from the
archaeal phylum Thaumarchaeota, which are known for being anammox archaea, and are important in the
nitrogen cycle. In addition to that, these archaea all produce a series of unusual lipids. Since these lipids are
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Figure 13.1: Grand Prismatic Spring in Yellowstone National Park (3)

shared across the entire phylum from which these genomes are pulled, it is possible that the biosynthetic genes
responsible for lipid construction are shared across the selected genomes, and part of their ‘core’ genome.

Archaea are relatively newly characterized as organisms. First classified in the ’70s3, for their deviations from
Prokaryotes, many Archaea are noteable for being isolated from extreme environments. Despite the colorful
beginnings of their classification, not all Archaea are extremophiles.

The aforementioned unusual lipds4 are striking in their differences from those common in both Eukaryotes
and Prokaryotes.

Whereas Lipid construction in eucharyotes and prokaryotes relies on iterative incorporation of malonyl-CoA
units, archaea utilize the melvonate pathway to construct their lipids through iterative incorporation of
dimethylallyl pyrophosphate. Which is responsible for the iterative methyl groups extant to the lipid chain in
B above. Archaeal lipids are also notable for their lack of ester linkages between the alkyl chain, and glyerol.
Even more interesting, and as yet uncharacterized, Archaea incorporate a range of ring structures into their
lipids, and additionally appear to fuse lipid tails together in the bilayer, as shown above in C.

13.2.2.3 The above is interesting, but so what?

Our goal with this workshop is to show how functions within DECIPHER, in addition to those found within
FindHomology can be used to predict homologs between genomes, as well as predict the core genome of
a given set of genomes. As stated above, the chemistry and biology involved in some of the construction
of archaeal lipids is unknown. Hypothetically, as this chemistry is universal in these organisms, the genes
responsible could all be homologs, and be identified as part of the core genome. Further we can compare the
core and pan genomes of this set.

To begin with, we will load the required packages: DECIPHER and FindHomology will provide tools
to complete the phylogenetic analysis, while phytools will provide visualization tools, specifically for the
visualization of tangelograms, and stringr is used for a specific string operation.

3(1) Woese, C. R.; Fox, G. E. Proc. Natl. Acad. Sci. 1977, 74 (11), 5088–5090.
4(1) Caforio, A.; Driessen, A. J. M. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. Elsevier November

1, 2017, pp 1325–1339.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC432104/
https://www.ncbi.nlm.nih.gov/pubmed/28007654
https://www.ncbi.nlm.nih.gov/pubmed/28007654
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Figure 13.2: A. A generic lipid with phosphatidyl serine head group B. A generic Archaeal lipid C. A more
exotic Archaeal lipid

13.2.2.4 Packages and Sequences

suppressMessages(library(DECIPHER))
library(FindHomology)
library(stringr)

13.2.2.5 Genomes, and DECIPHER databases

The first step in this process is selecting the genomes we want to work with. There are several ways to do this,
especially when accessing publically available genomes through the NCBI. Entrez Direct5 provides powerful
unix command line tools, if that’s your flavor, but the NCBI Genome List, and other search tools are easily
accessible, and have a lower barrier to to entry.

For the purposes of this workshop, we will be using a set of preselected genomes that will be accessed via ftp
addresses. These are loaded with the FindHomology Package and can be accessed easily.
data("GeneCallAdds")
data("GenomeAdds")
data("GenomeIDs")

We have now loaded in a character vector for ftp addresses for genomic fasta files GenomeAdds, a character
vector of ftp addresses for genomic GFF files GeneCallAdds that we will be using to collect gene boundaries,
strandedness, and annotations. And lastly a vector of abbreviated names for the genomes we are working
with.

FindHomology contains a simple parser function for GFF files that allows us to grab gene boundaries and
annotations.
GeneCalls <- FindHomology::GFFParser(GFFAddress = GeneCallAdds,

Verbose = TRUE)
#> ===========================================================================
#> Time difference of 7.119886 secs

5Entrez Direct

https://www.ncbi.nlm.nih.gov/books/NBK179288/
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Figure 13.3: Databases are compressable and easily shareable

If you choose to mimic this work on your own, there are a few ways to get gene calls(the gene boundaries,
and strandedness), and annotations, such as Prodigal6 (for gene calls) and Prokka7 (for annotations). Using
the NCBI annotations is simple and conducive for this workshop. However if you are working on sequence
data that you have generated or collected yourself, NCBI annotations will not be available. Additionally, a
Gene Caller within the DECIPHER package is currently under construction.

13.2.2.6 DECIPHER and Databases

DECIPHER works with sequence data through SQL databases. There are several reasons for this.

Databases provide large improvements in file organization. Currently, a personalized analysis pipeline could
include anywhere from one to tens of programs, all of which may take in similar data, or outputs of previous
steps, or may output more files than a user needs. DECIPHER’s use of databases allows for sequence data to
be stored in an organized format that eliminates this kind of redundancy.

Use of databases also allows for a non-destructive workflow. Sequence data in the database can be accessed
as needed, but cannot be accidentally manipulated. Databases are also shareable, allowing for accession by
multiple users at once.

Additionally, constructing a database in DECIPHER is relatively easy.

In your own work, it can be inadvisable to use tempfile() to specify the location of your .sqlite file, especially
if it will be a file you use repeatedly, or takes a significant amount of time to create, or that you will eventually
need to share with collaborators. However for this workhshop, it is fine.

We can access our databases through either a database connection, or simply a filepath to the database. In
this code chunk below, we will use a database connection.

DBPath <- tempfile()

DBConn <- dbConnect(SQLite(),
DBPath)

for (i in seq_along(GenomeAdds)) {
Seqs2DB(seqs = GenomeAdds[i],

type = "FASTA",
dbFile = DBConn,
identifier = as.character(i),

6(1) Hyatt, D.; Chen, G.-L.; LoCascio, P. F.; Land, M. L.; Larimer, F. W.; Hauser, L. J. BMC Bioinformatics 2010, 11 (1),
119.

7(1) Seemann, T. Bioinformatics 2014, 30 (14), 2068–2069.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848648/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848648/
https://www.ncbi.nlm.nih.gov/pubmed/24642063
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Figure 13.4: A syntenic hit in nucleotide space

tblName = "Seqs",
verbose = FALSE)

}

dbDisconnect(DBConn)

Identifying details of the database can be viewed in your default browser: BrowseDB(DBPath)

13.2.2.7 Comparison of genomes

Comparison of genomes will be accomplished with Synteny. Generically when regions in a genome are the
same, they are syntenic matches. Often observing this phenomenon is accomplished through matching runs
of reciprocal best blast hits. If in genome 1, genes A-B-C are reciprocal best blast hits to genes Z-Y-X in
genome 2, the region encompassing those genes would be considered syntenic.

In DECIPHER this is accomplished using k-mer matching, runs of an exact match of length k are identified
and recorded as a syntenic hit.

We can visualize syntenic hits as above, with co-linear representations of genomes with some graphical links to
signify the locations and lengths of syntenic hits. Or we can employ a dotplot, which utilizes the cumulative
nucleotide positions of two genomes as the x and y axes in a generic plot.

Syntenic Hits can be chained together, if they are close enough, to form larger syntenic blocks. The enough
part, has to be measured in nucleotide distance between the hits in question, in both genomes. This also
means that syntenic hits can be chained together with differing distances between them in each genome.
Making syntenic blocks different lengths in corresponding genomes. Additionally, chaining of hits allows for
utilizing smaller syntenic hits that may appear insignificant on their own, to be grouped in with other nearby
hits to increase their significance.

DECIPHER’s FindSynteny function allows users to control the degree to which hits and blocks are recorded
through the argument minScore, or a minimum score required for a block, or hit, to be kept as a real syntenic
match.

In this workflow, we will be determining Synteny between genomes before we consider the gene calls we have
already collected. Which stands in contrast to how many current synteny finding programs work. In the code
below FindSyntey() will perform pairways analysis of every set of genomes provided to it.
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Figure 13.5: A syntenic hit, and several hits being chained toegher into a syntenic block

# Here we will use a file path instead of a dbconnection
SyntenyObject <- FindSynteny(dbFile = DBPath,

verbose = TRUE)
#> ===========================================================================
#>
#> Time difference of 50.38 secs

There are multiple ways to view objects of class synteny. It has default view options for plot(). By default,
colors are assigned as a ramp from the first nucleotide position, to the last nucleotide position of the query
genome, or the first genome selected, and wherever syntenic hits are observed, the bar representing the subject
genome is marked with the section of the color ramp indicating the syntenic hit in the query.

Plotting genomes 2 and 3, which are very syntenic, provides a good example of this. Grey uncolored space
in the subject genome indicates a lack of syntenic blocks in that region. In some places, the ramp reverses,
indicating an inversion, while in others, blocks are reordered from the default color bar, indicating possible
rearrangements.
plot(SyntenyObject[2:3, 2:3])
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Because visualizing large numbers of syntenic hits in genome sized sequences can be non-trivial, additional
commands can be passed to plot in order to modify coloring schemes. frequency causes bars representing
genomes to be colored by how syntenic that particular region (as determined by cumulative nucleotide
position) of the genome is, indiscriminate of where that hit is in a corresponding genome. Once again genomes
2 and 3 in our set are good examples of this. They are highly syntenic, which this option shows well, but the
rearrangements present are no longer shown.
plot(SyntenyObject[2:3, 2:3],

"frequency")
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Because visualizing large numbers of syntenic hits in genome sized sequences can be non-trivial, additional
commands can be passed to plot in order to modify coloring schemes. neighbor tries to provide each
syntenic hit with a unique color, and additionally draws linear connections between them to facilitate better
visualization. This can be a useful alternative to the default plotting, if many rearrangements are present in
a way that you want to view.
plot(SyntenyObject[2:3, 2:3],

"neighbor")
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Plotting is a useful tool in analzying sequence data, however sometimes plots of genome sized sequence data
can be a bit overwhelming. Plotting our entire database, 8 sequences, though good at representing the
complexity present here in this workshop, can be daunting to make sense of quickly if you are unused to
looking at figures of this type frequently.
plot(SyntenyObject,

"neighbor")
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The most useful way to visualize Synteny data in my opinion is through a dot plot, which can be accessed
via the pairs(). Dot plots, as explained above, utilize each genome being compared, as an axis in a normal
x-y scatter plot. Where a dot - really a very short line, representing a run of nucleotides or amino acids - is
shown, that x,y coordinate is a syntenic hit. Hits can also be chained together into blocks of syntenic hits.
pairs(SyntenyObject[2:3, 2:3], labels = GenomeIDs[2:3])
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Syntenic hits are shown in the upper left, while syntenic blocks are shown in the bottom left. In the upper
triangle,hits in black are co-linear, while hits in red are inverted. In the bottom triangle, blocks are colored
by score.

Pairs plots are my personal favorite way to visualize syntenic information, but, they can become overwhelming
as the number of genomes compared increases. They provide very clear depictions of rearrangements and
inversions.
pairs(SyntenyObject,

labels = GenomeIDs)
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13.2.2.8 Predict homology between genes that are linked by syntenic hits

The FindHomology package contains 5 functions, the second of which is below. NucleotideOverlap takes in
an object of class Synteny, and a list of gene calls. We previously generated the object SyntenyObject, using
DECIPHER’s function FindSynteny, and a list of gene calls and annotations using GFFParser. Here we will
use these two objects to build what is functionally a list of pairs of genes that are linked by syntenic hits.
These linking of hits are used as predictions of homology. A single position in the object of class Synteny
represents a pairwise comparison between two genomes. The corresponding position in NucleotideOverlap’s
output object, is generated from that pairwise comparison, and the gene calls for each genome involved.

This is a fun object to scroll through, but is often very long, representing thousands of paired genes and is
not represented well visually, a simple example would be:

Genome 1 Genome 2 # of Nucleotides
Gene A Gene Z 25L
Gene B Gene Y 1251L
Gene C Gene X 145L
Gene . . . Gene . . . . . .

The reason we name this “MatrixObject” below is because the shape and dimensions of our data are dependent
upon our synteny object. As in, if our Synteny object was built from 5 genomes, that object is a 5 x 5 matrix.
NucleotideOverlap accesses the upper triangle of that object to build a 5 x 5 matrix where each position is
built from data in the analogous position from the Synteny object. MatrixObject[[1]][1, 2] below was
created from SyntenyObject[[1]][1, 2] and so on and so forth.
MatrixObject <- NucleotideOverlap(SyntenyObject = SyntenyObject,

GeneCalls = GeneCalls,
Verbose = TRUE)
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#> ===========================================================================
#> Time difference of 1.006026 mins

The function Catalog takes in the output of NucleotideOverlap and returns a list of matrices. These
matrices represent agglomerated sets of pairs. The idea being, if gene A in genome 1 was paired by nucleotide
overlap to genes B and C in genomes 2 and 3 respectively by NucleotideOverLap, and additionally gene
B in genome 2 was similarly paired with gene C in genome 3. With the assumption that these linkages
indicate homology, gene A is predicted to be homologous to genes B and C, and gene B is predicted to be
homologous to gene C.

Genome 1 Genome 2 Genome 3
Gene A Gene B NA
NA Gene B Gene C
Gene A NA Gene C

Catalog will return every agglomerated set of pairs, of every size possible for the given set of genomes. From
a matrix with a single row, indicating a pair of genes that are predicted to have no other homologs anywhere
else in the set of genomes, to a large matrix indicating that homologs are located in every genome, and are
all predicted to be homologous to each other.
Homologs <- Catalog(MatrixObject,

Verbose = TRUE)
#> ===========================================================================
#> Time difference of 1.886642 mins

We can visualize this object as a histogram of the size of these agglomerations, by the number of pairs
included in each agglomerated group. Where 1 represents pairs of genes where neither gene is linked to any
other gene, from other genomes. Where 28 in this case represents fully linked sets of pairs, where each gene
in the set is predicted to be a homolog of every other gene in the set.
hist(sapply(Homologs,

function(x) nrow(x)),
main = "Size of Agglomerations",
ylab = "Number of Sets",
xlab = "Numer of Gene Pairs",
breaks = 27L)
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We can collect these fully linked sets. For any N number of genomes, a set of genes where each genome
contains a homolog, and those homologs in turn have agreeing homologs in every other genome, the number
of rows of this matrix will be N * (N-1) / 2.

You could additionally query this list for any other presence absence pattern that you may be interested in,
especially if it can be easily linked to the number of rows in each matrix.
MaxRows <- max(sapply(Homologs,

function(x) nrow(x)))
CoreSet <- which(sapply(Homologs,

function(x) nrow(x)) == MaxRows)

The second to last function in FindHomology, CoreAligner, collects the genes in these sets, from their
respective genomes, aligns the respective sets, and then concatonates the alignments. Creating a concatonated
core genome for this set of genomes. This function relies on a few DECIPHER functions internally, and
utilizes DECIPHER’s database functionality to perform that collection of genes. Additionally, we can use a
few more DECIPHER functions to create a distance matrix from our concatonated core genome, and create a
phylogenetic tree from that concatonated core.
CoreGenome <- CoreAligner(Homologs[CoreSet],

PATH = DBPath,
GeneCalls = GeneCalls,
Verbose = TRUE)

#> ===========================================================================
#> Time difference of 33.55228 secs
CoreDist <- DistanceMatrix(myXStringSet = CoreGenome,

verbose = FALSE,
correction = "Jukes-Cantor")

CoreDend <- IdClusters(myDistMatrix = CoreDist,
myXStringSet = CoreGenome,
method = "NJ",
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verbose = FALSE,
showPlot = TRUE,
type = "dendrogram")
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We can now finally tidy up our workspace and unlink our temp file.
unlink(DBPath)

We are also interested in the pan genome, and FindHomolog’s LogicalPan function allows us to utilize the
Homologs object, and the list of GeneCall dataframes, to create a presence absence matrix of the pan genome.
PanGenomeMatrix <- LogicalPan(HomologList = Homologs,

GeneCalls = GeneCalls,
Verbose = TRUE,
Plot = FALSE)

#> ===========================================================================
#> Time difference of 1.120135 secs

We can visualize this matrix if we so choose.
image(t(PanGenomeMatrix), col = c("white", "blue"),

main = "Presence Absence")
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PanGenomeMatrix represents every homolog set, and every singleton gene in our genomes.

This matrix is constructed from the object Homologs which is a list of matrices. Each matrix represents of a
set of predicted homologous pairs. Some of the sets are small, say a single pair. Some are large, encompassing
genes in every genome in our set. However, the one thing this matrix is missing is singleton genes from each
genome. Genes that have no predicted homologs by our method.

And we can create a dendrogram from this matrix.
PanGenome <- dist(PanGenomeMatrix,

method = "binary")
PanDend <- IdClusters(myDistMatrix = PanGenome,

method = "NJ",
type = "dendrogram",
showPlot = TRUE,
verbose = FALSE)
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We can, additionally, create a simple tangleogram from these two phylogenetic trees. Allowing a comparison
of the core, and pan genomes. The core is on the left, while the pan is on the right.
tf1 <- tempfile()
tf2 <- tempfile()

WriteDendrogram(x =PanDend,
file = tf1)

WriteDendrogram(x = CoreDend,
file = tf2)

unlink(tf1)
unlink(tf2)
layout(matrix(1:2, nrow = 1L))
p <- par(mar = c(5, 2, 1, 2))
plot(CoreDend, horiz = TRUE, leaflab = "none")
par(mar = c(5, 2, 1, 2))
plot(PanDend, horiz = TRUE, xlim = c(0, attr(PanDend, "height")), leaflab = "none")
C.Ord <- unlist(CoreDend)
P.Ord <- unlist(PanDend)
segments(-0.10, seq_along(C.Ord), -0.01, match(C.Ord, P.Ord), xpd = NA, col = "blue")

0.30 0.20 0.10 0.00 0.00 0.10 0.20 0.30
par(p)

The proposition at the beginning of this workshop was that a specific set of genes, that may not normally be
included in a core genome, could be included in the core genome, for this set of Archaea. Specifically, genes
involved in some of the unusual chemistry that Archaea do with their lipids. If we wanted to really prove
this, a significant amount of lab work would also be required. However we can collect the annotations for all
of the sets of homologs that have been predicted, and see how much these annotations agree, and if any of
these annotations provide evidence for our proposition.
CoreGenes <- matrix(data = NA_integer_,

ncol = length(GeneCalls),
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nrow = length(CoreSet))
CoreAnnotations <- matrix(data = NA_character_,

ncol = length(GeneCalls),
nrow = length(CoreSet))

for (i in seq_len(ncol(CoreGenes))) {
for (j in seq_len(nrow(CoreGenes))) {

CoreGenes[j, i] <- unique(Homologs[CoreSet[j]][[1]][, i])[!is.na(unique(Homologs[CoreSet[j]][[1]][, i]))]
CoreAnnotations[j, i] <- GeneCalls[[i]][CoreGenes[j, i], "Annotation"]

}
}

CoreAnnotations <- t(CoreAnnotations)
CoreAnnotations <- data.frame(CoreAnnotations,

stringsAsFactors = FALSE)

The annotations for each core set can now be viewed. Some provide near-universal agreement, while others
indicate genes of similar family and function, but potentially not an exact match.
CoreAnnotations[, c(1L, 3L)]
#> X1 X3
#> 1 acetoacetyl-CoA thiolase DNA-directed RNA polymerase subunit H
#> 2 propanoyl-CoA C-acyltransferase RNA polymerase Rpb5
#> 3 propanoyl-CoA C-acyltransferase RNA polymerase Rpb5
#> 4 acetoacetyl-CoA thiolase DNA-directed RNA polymerase subunit H
#> 5 acetoacetyl-CoA thiolase DNA-directed RNA polymerase subunit H
#> 6 acetyl-CoA acetyltransferase DNA-directed RNA polymerase%2C subunit H
#> 7 acetoacetyl-CoA thiolase DNA-directed RNA polymerase subunit H
#> 8 Propanoyl-CoA C-acyltransferase RNA polymerase Rpb5

There are 60 of these!
CoreAnnotations[, 2L]
#> [1] "ribonucleoside-diphosphate reductase"
#> [2] "ribonucleoside-diphosphate reductase%2C adenosylcobalamin-dependent"
#> [3] "ribonucleoside-diphosphate reductase%2C adenosylcobalamin-dependent"
#> [4] "Ribonucleoside-diphosphate reductase"
#> [5] "Ribonucleoside-diphosphate reductase"
#> [6] "ribonucleoside-diphosphate reductase class II"
#> [7] "ribonucleoside-diphosphate reductase"
#> [8] "ribonucleoside-diphosphate reductase%2C adenosylcobalamin-dependent"

Now, a little insider baseball is that the unique chemistry we’re interested in is often the chemistry of radicals,
especially in biological systems, where the process is tightly controlled by enzymes. A quick perusal of all the
sets of annotations provides two sets that support our original hypothesis.
CoreAnnotations[, c(17L, 31L)]
#> X17 X31
#> 1 radical SAM domain protein putative radical SAM domain protein
#> 2 radical SAM protein radical SAM protein
#> 3 radical SAM protein radical SAM protein
#> 4 Radical SAM domain protein Radical SAM protein
#> 5 hypothetical protein Radical SAM protein
#> 6 putative Fe-S oxidoreductase Fe-S oxidoreductase
#> 7 radical SAM domain protein putative radical SAM domain protein
#> 8 Radical SAM domain protein Radical SAM domain protein



13.2. WORKSHOP GOALS AND OBJECTIVES 321

This concludes the workshop, as any analysis after this would require work in a wet lab. Hopefully this
was a useful showcase for the power of using DECIPHER to analyze sets of genomic data. The package
FindHomology is currently located on github, and is still under construction. Upon completion, it will be
available on Bioconductor.

Thank you for your time and attention! We hope you learned something, and if you come back to this at a
later date and have any questions, concerns, or comments, feel free to email me, or you can tweet at me.

npc19@pitt.edu
https://twitter.com/npcooley


322CHAPTER 13. 250: WORKING WITH GENOMIC DATA IN R WITH THE DECIPHER PACKAGE



Chapter 14

260: Biomarker discovery from large
pharmacogenomics datasets

14.1 Instructors:

• Zhaleh Safikhani (zhaleh.safikhani@utoront.ca)
• Petr Smirnov (petr.smirnov@mail.utoronto.ca)
• Benjamin Haibe-Kains (benjamin.haibe.kains@utoronto.ca)

14.2 Workshop Description

This workshop will focus on the challenges encountered when applying machine learning techniques in complex,
high dimensional biological data. In particular, we will focus on biomarker discovery from pharmacogenomic
data, which consists of developing predictors of response of cancer cell lines to chemical compounds based on
their genomic features. From a methodological viewpoint, biomarker discovery is strongly linked to variable
selection, through methods such as Supervised Learning with sparsity inducing norms (e.g., ElasticNet) or
techniques accounting for the complex correlation structure of biological features (e.g., mRMR). Yet, the
main focus of this talk will be on sound use of such methods in a pharmacogenomics context, their validation
and correct interpretation of the produced results. We will discuss how to assess the quality of both the input
and output data. We will illustrate the importance of unified analytical platforms, data and code sharing
in bioinformatics and biomedical research, as the data generation process becomes increasingly complex
and requires high level of replication to achieve robust results. This is particularly relevant as our portfolio
of machine learning techniques is ever enlarging, with its set of hyperparameters that can be tuning in a
multitude of ways, increasing the risk of overfitting when developing multivariate predictors of drug response.

14.2.1 Pre-requisites

• Basic knowledge of R syntax
• Familiarity with the machine learning concept and at least a few approaches

Following resources might be useful to read:

• https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv723
• https://academic.oup.com/nar/article/46/D1/D994/4372597
• https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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14.2.2 Workshop Participation

Participants expected to have the following required packages installed on their machines to be able to run the
commands along with the instructors. * PharmacoGx and Biobase from Bioconductor * xtable, Hmisc, foreach,
devtools, mRMRe, caret, glmnet, randomForest from cran * bhklab/mci and bhklab/PharmacoGx-ML from
github

14.2.3 R / Bioconductor packages used

• https://bioconductor.org/packages/release/bioc/html/PharmacoGx.html

14.2.4 Time outline

An example for a 45-minute workshop:

Activity Time
Introduction 10m
Basic functionalities of PharmacoGx 15m
Consistency assessment between datasets 15m
Machine learning and biomarker discovery 20m

14.3 Workshop goals and objectives

14.3.1 Learning goals

• describe the pharmacogenomic datasets and their usefulness
• learn how to extract information from these datasets and to intersect them over their common features
• identify functionalities available in PharmacoGx package to work with the high dimensional pharma-

cogenomics data
• assess reproducibility and replication of pharmacogenomics studies
• understand how to handle the biomarker discovery as a pattern recognition problem in the domain of

pharmacogenomics studies

14.3.2 Learning objectives

• list available standardized pharmacogenomic datasets and download them
• understand the structure of these datasets and how to access the features and response quantifications
• create drug-dose response plots
• Measure the consistency across multiple datasets and how to improve such measurements
• Assess whether known biomarkers are reproduced within these datasets
• Predict new biomarkers by applying different machine learning methods

14.4 Abstract

This course will focus on the challenges encountered when applying machine learning techniques in complex,
high dimensional biological data. In particular, we will focus on biomarker discovery from pharmacogenomic
data, which consists of developing predictors of response of cancer cell lines to chemical compounds based on

https://bioconductor.org/packages/release/bioc/html/PharmacoGx.html
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their genomic features. From a methodological viewpoint, biomarker discovery is strongly linked to variable
selection, through methods such as Supervised Learning with sparsity inducing norms (e.g., ElasticNet) or
techniques accounting for the complex correlation structure of biological features (e.g., mRMR). Yet, the
main focus of this talk will be on sound use of such methods in a pharmacogenomics context, their validation
and correct interpretation of the produced results. We will discuss how to assess the quality of both the input
and output data. We will illustrate the importance of unified analytical platforms, data and code sharing
in bioinformatics and biomedical research, as the data generation process becomes increasingly complex
and requires high level of replication to achieve robust results. This is particularly relevant as our portfolio
of machine learning techniques is ever enlarging, with its set of hyperparameters that can be tuning in a
multitude of ways, increasing the risk of overfitting when developing multivariate predictors of drug response.

14.5 Introduction

Pharmacogenomics holds much potential to aid in discovering drug response biomarkers and developing
novel targeted therapies, leading to development of precision medicine and working towards the goal of
personalized therapy. Several large experiments have been conducted, both to molecularly characterize drug
dose response across many cell lines, and to examine the molecular response to drug administration. However,
the experiments lack a standardization of protocols and annotations, hindering meta-analysis across several
experiments.

PharmacoGx was developed to address these challenges, by providing a unified framework for downloading
and analyzing large pharmacogenomic datasets which are extensively curated to ensure maximum overlap
and consistency.

PharmacoGx is based on a level of abstraction from the raw experimental data, and allows bioinformaticians
and biologists to work with data at the level of genes, drugs and cell lines. This provides a more intuitive
interface and, in combination with unified curation, simplifies analyses between multiple datasets.

Load PharmacoGx into your current workspace:
suppressPackageStartupMessages({

library(PharmacoGx, verbose=FALSE)
library(mCI, verbose=FALSE)
library(PharmacoGxML, verbose=FALSE)
library(Biobase, verbose=FALSE)

})
#> Warning in fun(libname, pkgname): couldn't connect to display ":0"

14.5.1 Downloading PharmacoSet objects

We have made the PharmacoSet objects of the curated datasets available for download using functions provided
in the package. A table of available PharmacoSet objects can be obtained by using the availablePSets function.
Any of the PharmacoSets in the table can then be downloaded by calling downloadPSet, which saves the
datasets into a directory of the users choice, and returns the data into the R session.

availablePSets(saveDir=file.path(".", "Safikhani_Pharmacogenomics"))
GDSC <- downloadPSet("GDSC", saveDir=file.path(".", "Safikhani_Pharmacogenomics"))
CCLE <- downloadPSet("CCLE", saveDir=file.path(".", "Safikhani_Pharmacogenomics"))

http://bioconductor.org/packages/PharmacoGx
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Figure 14.1: Tissue of origin of cell lines in CCLE study

14.6 Reproducibility

PharmacoGx can be used to process pharmacogenomic datasets. First we want to check the heterogenity of
cell lines in one of the available psets, CCLE.
mycol <- c("#8dd3c7","#ffffb3","#bebada","#fb8072","#80b1d3","#fdb462",

"#b3de69","#fccde5","#d9d9d9","#bc80bd","#ccebc5","#ffed6f",
"#a6cee3","#1f78b4","#b2df8a","#33a02c","#fb9a99","#e31a1c",
"#fdbf6f","#ff7f00","#cab2d6","#6a3d9a","#ffff99","#b15928")

pie(table(CCLE@cell[,"tissueid"]),
col=mycol,
main="Tissue types",
radius=1,
cex=0.8)

14.6.1 Plotting Drug-Dose Response Data

Drug-Dose response data included in the PharmacoSet objects can be conviniently plotted using the drug-
DoseResponseCurve function. Given a list of PharmacoSets, a drug name and a cell name, it will plot the
drug dose response curves for the given cell-drug combination in each dataset, allowing direct comparisons of
data between datasets.
CCLE.auc <- summarizeSensitivityProfiles(

pSet=CCLE,
sensitivity.measure="auc_published",
summary.stat="median",
verbose=FALSE)

lapatinib.aac <- CCLE.auc["lapatinib",]
cells <- names(lapatinib.aac)[
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Figure 14.2: Cells response to lapatinib in CCLE

c(which.min(lapatinib.aac),
which((lapatinib.aac > 0.2) & (lapatinib.aac < 0.4))[1],
which.max(lapatinib.aac))]

par(mfrow=c(2, 2))
drugDoseResponseCurve(drug="lapatinib", cellline=cells[1],

pSets=CCLE, plot.type="Fitted",
legends.label="auc_published")

drugDoseResponseCurve(drug="lapatinib", cellline=cells[2],
pSets=CCLE, plot.type="Fitted",
legends.label="auc_published")

drugDoseResponseCurve(drug="lapatinib", cellline=cells[3],
pSets=CCLE, plot.type="Fitted",
legends.label="auc_published")

14.6.2 Pharmacological profiles

In pharmacogenomic studies, cancer cell lines were also tested for their response to increasing concentrations
of various compounds, and form this the IC50 and AAC were computed. These pharmacological profiles are
available for all the psets in PharmacoGx.
library(ggplot2, verbose=FALSE)
library(reshape2, verbose=FALSE)
melted_data <- melt(CCLE.auc)
NA_rows <- unique(which(is.na(melted_data), arr.ind=T)[,1])
melted_data <- melted_data[-NA_rows,]
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Figure 14.3: Cells response to drugs in CCLE

ggplot(melted_data, aes(x=Var1,y=value)) +
geom_boxplot(fill="gray") +
theme(axis.text.x=element_text(angle=90,hjust=1)) +
xlab("Drugs") +
ylab("AAC")

#hist(CCLE.auc["lapatinib",], xlab="Cells response to lapatinib(AAC)",
# col="gray", main="")

14.7 Replication

In this section we will investigate the consistency between the GDSC and CCLE datasets. In both CCLE
and GDSC, the transcriptome of cells was profiled using an Affymatrix microarray chip. Cells were also
tested for their response to increasing concentrations of various compounds, and form this the IC50 and
AUC were computed. However, the cell and drugs names used between the two datasets were not consistent.
Furthermore, two different microarray platforms were used. However, PharmacoGx allows us to overcome
these differences to do a comparative study between these two datasets.

GDSC was profiled using the hgu133a platform, while CCLE was profiled with the expanded hgu133plus2
platform. While in this case the hgu133a is almost a strict subset of hgu133plus2 platform, the expression
information in PharmacoSet objects is summarized by Ensemble Gene Ids, allowing datasets with different
platforms to be directly compared. The probe to gene mapping is done using the BrainArray customCDF for
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each platform [?].

To begin, you would load the datasets from disk or download them using the downloadPSet function above.

We want to investigate the consistency of the data between the two datasets. The common intersection
between the datasets can then be found using intersectPSet. We create a summary of the gene expression and
drug sensitivity measures for both datasets, so we are left with one gene expression profile and one sensitivity
profile per cell line within each dataset. We can then compare the gene expression and sensitivity measures
between the datasets using a standard correlation coefficient.
common <- intersectPSet(pSets = list("CCLE"=CCLE, "GDSC"=GDSC),

intersectOn = c("cell.lines", "drugs"),
strictIntersect = TRUE)

#> Intersecting large PSets may take a long time ...
drugs <- drugNames(common$CCLE)

##Example of concordant and discordant drug curves
cases <- rbind(

c("CAL-85-1", "17-AAG"),
c("HT-29", "PLX4720"),
c("COLO-320-HSR", "AZD6244"),
c("HT-1080", "PD-0332991"))

par(mfrow=c(2, 2))
for (i in seq_len(nrow(cases))) {

drugDoseResponseCurve(pSets=common,
drug=cases[i,2],
cellline=cases[i,1],
legends.label="ic50_published",
plot.type="Fitted",
ylim=c(0,130))

}

14.7.1 Consistency of pharmacological profiles

##AAC scatter plot
GDSC.aac <- summarizeSensitivityProfiles(

pSet=common$GDSC,
sensitivity.measure='auc_recomputed',
summary.stat="median",
verbose=FALSE)

CCLE.aac <- summarizeSensitivityProfiles(
pSet=common$CCLE,
sensitivity.measure='auc_recomputed',
summary.stat="median",
verbose=FALSE)

GDSC.ic50 <- summarizeSensitivityProfiles(
pSet=common$GDSC,
sensitivity.measure='ic50_recomputed',
summary.stat="median",
verbose=FALSE)

CCLE.ic50 <- summarizeSensitivityProfiles(
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Figure 14.4: Consistency of drug response curves across studies

pSet=common$CCLE,
sensitivity.measure='ic50_recomputed',
summary.stat="median",
verbose=FALSE)

drug <- "lapatinib"
#par(mfrow=c(1, 2))
myScatterPlot(x=GDSC.aac[drug,],

y=CCLE.aac[drug,],
method=c("transparent"),
transparency=0.8, pch=16, minp=50,
xlim=c(0, max(max(GDSC.aac[drug,], na.rm=T), max(CCLE.aac[drug,], na.rm=T))),
ylim=c(0, max(max(GDSC.aac[drug,], na.rm=T), max(CCLE.aac[drug,], na.rm=T))),
main="cells response to lapatinib",
cex.sub=0.7,
xlab="AAC in GDSC",
ylab="AAC in CCLE")

legend("topright",
legend=sprintf("r=%s\nrs=%s\nCI=%s",

round(cor(GDSC.aac[drug,],
CCLE.aac[drug,],
method="pearson",
use="pairwise.complete.obs"),

digits=2),
round(cor(GDSC.aac[drug,],
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Figure 14.5: Concordance of AAC values

CCLE.aac[drug,],
method="spearman",
use="pairwise.complete.obs"),

digits=2),
round(paired.concordance.index(GDSC.aac[drug,],

CCLE.aac[drug,],
delta.pred=0,
delta.obs=0)$cindex,

digits=2)),
bty="n")

14.7.2 consistency assessment improved by Modified Concordance Index

To better assess the concordance of multiple pharmacogenomic studies we introduced the modified concordance
index (mCI). Recognizing that the noise in the drug screening assays is high and may yield to inaccurate
sensitive-based ranking of cell lines with close AAC values, the mCI only considers cell line pairs with drug
sensitivity (AAC) difference greater than δ .
c_index <- mc_index <- NULL
for(drug in drugs){

tt <- mCI::paired.concordance.index(GDSC.aac[drug,], CCLE.aac[drug,], delta.pred=0, delta.obs=0, alternative="greater")
c_index <- c(c_index, tt$cindex)
tt <- mCI::paired.concordance.index(GDSC.aac[drug,], CCLE.aac[drug,], delta.pred=0.2, delta.obs=0.2, alternative="greater", logic.operator="or")
mc_index <- c(mc_index, tt$cindex)

}
mp <- barplot(as.vector(rbind(c_index, mc_index)), beside=TRUE, col=c("blue", "red"), ylim=c(0, 1), ylab="concordance index", space=c(.15,.85), border=NA, main="mCI")
text(mp, par("usr")[3], labels=as.vector(rbind(drugs, rep("", 15))), srt=45, adj=c(1.1,1.1), xpd=TRUE, cex=.8)
abline(h=.7, lty=2)
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14.7.3 Known Biomarkers

The association between molecular features and response to a given drug is modelled using a linear regression
model adjusted for tissue source:

Y = β0 + βiGi + βtT + βbB

where Y denotes the drug sensitivity variable, Gi, T and B denote the expression of gene i, the tissue source
and the experimental batch respectively, and βs are the regression coefficients. The strength of gene-drug
association is quantified by βi, above and beyond the relationship between drug sensitivity and tissue source.
The variables Y and G are scaled (standard deviation equals to 1) to estimate standardized coefficients from
the linear model. Significance of the gene-drug association is estimated by the statistical significance of
βi (two-sided t test). P-values are then corrected for multiple testing using the false discovery rate (FDR)
approach.

As an example of the reproducibility of biomarker discovery across pharmacogenomic studies, we can model
the significance of the association between two drugs and their known biomarkers in CCLE and GDSC.
We examine the association between drug 17-AAG and gene NQO1, as well as drug PD-0325901 and gene
BRAF :

features <- PharmacoGx::fNames(CCLE, "rna")[
which(featureInfo(CCLE,

"rna")$Symbol == "NQO1")]
ccle.sig.rna <- drugSensitivitySig(pSet=CCLE,

mDataType="rna",
drugs=c("17-AAG"),
features=features,
sensitivity.measure="auc_published",
molecular.summary.stat="median",
sensitivity.summary.stat="median",
verbose=FALSE)
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gdsc.sig.rna <- drugSensitivitySig(pSet=GDSC,
mDataType="rna",
drugs=c("17-AAG"),
features=features,
sensitivity.measure="auc_published",
molecular.summary.stat="median",
sensitivity.summary.stat="median",
verbose=FALSE)

ccle.sig.mut <- drugSensitivitySig(pSet=CCLE,
mDataType="mutation",
drugs=c("PD-0325901"),
features="BRAF",
sensitivity.measure="auc_published",
molecular.summary.stat="and",
sensitivity.summary.stat="median",
verbose=FALSE)

gdsc.sig.mut <- drugSensitivitySig(pSet=GDSC,
mDataType="mutation",
drugs=c("PD-0325901"),
features="BRAF",
sensitivity.measure="auc_published",
molecular.summary.stat="and",
sensitivity.summary.stat="median",
verbose=FALSE)

ccle.sig <- rbind(ccle.sig.rna, ccle.sig.mut)
gdsc.sig <- rbind(gdsc.sig.rna, gdsc.sig.mut)
known.biomarkers <- cbind("GDSC effect size"=gdsc.sig[,1],

"GDSC pvalue"=gdsc.sig[,6],
"CCLE effect size"=ccle.sig[,1],
"CCLE pvalue"=ccle.sig[,6])

rownames(known.biomarkers) <- c("17-AAG + NQO1","PD-0325901 + BRAF")
library(xtable, verbose=FALSE)
xtable(known.biomarkers, digits=c(0, 2, -1, 2, -1), caption='Concordance of biomarkers across stuudies')
par(mfrow=c(2, 2))
CCLE_expr <- t(exprs(summarizeMolecularProfiles(CCLE, mDataType="rna", fill.missing=FALSE)))
CCLE_cells <- intersect(rownames(CCLE_expr), colnames(CCLE.aac))
plot(CCLE.aac["17-AAG", CCLE_cells], CCLE_expr[CCLE_cells, features],
main="CCLE + 17-AAG + NQO1",
cex.main=1, ylab="Predictions", xlab="drug sensitivity", pch=20, col="gray40")

GDSC_expr <- t(exprs(summarizeMolecularProfiles(GDSC, mDataType="rna", fill.missing=FALSE)))
#> Summarizing rna molecular data for: GDSC

GDSC_cells <- intersect(rownames(GDSC_expr), colnames(GDSC.aac))
plot(GDSC.aac["17-AAG", GDSC_cells], GDSC_expr[GDSC_cells, features],
main="GDSC + 17-AAG + NQO1",
cex.main=1, ylab="Predictions", xlab="drug sensitivity", pch=20, col="gray40")

CCLE_mut <- t(exprs(summarizeMolecularProfiles(CCLE, mDataType="mutation", fill.missing=FALSE, summary.stat="or")))
CCLE_cells <- intersect(rownames(CCLE_mut), colnames(CCLE.aac))
boxplot(CCLE.aac["PD-0325901", CCLE_cells]~ CCLE_mut[CCLE_cells, "BRAF"], col="gray80", pch=20, main="CCLE + PD-0325901 + BRAF",

cex.main=1, xlab="mutation", ylab="drug sensitivity")

GDSC_mut <- t(exprs(summarizeMolecularProfiles(GDSC, mDataType="mutation", fill.missing=FALSE, summary.stat="or")))
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GDSC_cells <- intersect(rownames(GDSC_mut), colnames(GDSC.aac))
boxplot(GDSC.aac["PD-0325901", GDSC_cells]~ GDSC_mut[GDSC_cells, "BRAF"], col="gray80", pch=20, main="GDSC + PD-0325901 + BRAF",

cex.main=1, xlab="mutation", ylab="drug sensitivity")
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14.8 Machine Learning and Biomarker Discovery

Some of the widely used multivariate machine learning methods such as elastic net, Random Forest (RF)
and Support Vector Machine (SVM) have been already implemented in the MLWorkshop. It optimizes
hyperparameters of these methods in the training phase. To assess the performance of the predictive models, it
implements m number of sampling with n-fold cross validations (CV). The performance will then be assessed
by multiple metrics including pearson correlation coefficient, concordance index and modified concordance
index.
suppressPackageStartupMessages({

library(mRMRe, verbose=FALSE)
library(Biobase, verbose=FALSE)
library(Hmisc, verbose=FALSE)
library(glmnet, verbose=FALSE)
library(caret, verbose=FALSE)
library(randomForest, verbose=FALSE)

})
##Preparing trainig dataset
train_expr <- t(exprs(summarizeMolecularProfiles(GDSC, mDataType="rna", fill.missing=FALSE, verbose=FALSE)))
aac <- summarizeSensitivityProfiles(GDSC, sensitivity.measure="auc_recomputed", drug="lapatinib", fill.missing=FALSE, verbose=FALSE)
cells <- intersect(rownames(train_expr), names(aac))
df <- as.matrix(cbind(train_expr[cells,], "lapatinib"=aac[cells]))
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##Preparing validation dataset
validation_expr <- summarizeMolecularProfiles(CCLE, mDataType="rna", fill.missing=FALSE, verbose=FALSE)
actual_labels <- summarizeSensitivityProfiles(CCLE, sensitivity.measure="auc_recomputed", drug="lapatinib", fill.missing=FALSE, verbose=FALSE)

for(method in c("ridge", "lasso", "random_forest", "svm")){
par(mfrow=c(1, 2))
res <- optimization(train=df[, -ncol(df), drop=F],

labels=t(df[, ncol(df), drop=F]),
method=method,
folds.no=5,
sampling.no=1,
features.no=10,
feature.selection="mRMR",
assessment=c("corr", "mCI"))

validation_labels <- validation(model=res$model$lapatinib,
validation.set=t(exprs(validation_expr)),
validation.labels=actual_labels,
method=method,
assessment="mCI")

}
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14.8.1 Bonus: Using the Connectivity Map for drug repurposing

We show here how to use PharmacoGx for linking drug perturbation signatures inferred from CMAP to
independent signatures of HDAC inhibitors published in Glaser et al. (2003). We therefore sought to
reproduce the HDAC analysis in Lamb et al. (2006) using the latest version of CMAP that can be downloaded
using downloadPSet. The connectivityScore function enables the computation of the connectivity scores
between the 14-gene HDAC signature from (Glaser et al., 2003) and over 1000 CMAP drugs. This analysis
results in the four HDAC inhibitors in CMAP being ranked at the top of the drug list (Fig. 2), therefore
concurring with the original CMAP analysis (Lamb et al., 2006).
## download and process the HDAC signature
mydir <- "1132939s"
downloader::download(paste("http://www.sciencemag.org/content/suppl/2006/09/29/313.5795.1929.DC1/", mydir, ".zip", sep=""), destfile=paste(mydir,".zip",sep=""))
unzip(paste(mydir,".zip", sep=""))

library(hgu133a.db)
library(PharmacoGx)

HDAC_up <- gdata::read.xls(paste(mydir, paste(mydir, "sigS1.xls", sep="_"),sep="/"), sheet=1, header=FALSE, as.is=TRUE)
HDAC_down <- gdata::read.xls(paste(mydir, paste(mydir, "sigS1.xls", sep="_"),sep="/"), sheet=2, header=FALSE, as.is=TRUE)
HDAC <- as.data.frame(matrix(NA, nrow=nrow(HDAC_down)+nrow(HDAC_up), ncol=2))
annot <- AnnotationDbi::select(hgu133a.db, keys = c(HDAC_up[[1]], HDAC_down[[1]]), columns=c("ENSEMBL"), keytype="PROBEID")
gene_up <- unique(annot[match(HDAC_up[[1]], annot[,1]),2])
gene_down <- na.omit(unique(annot[match(HDAC_down[[1]], annot[,1]),2]))
HDAC_genes <- as.data.frame(matrix(NA, nrow=length(gene_down)+length(gene_up), ncol=2))

HDAC_genes[ , 2] <- c(rep(1, times=length(gene_up)), rep(-1, times=length(gene_down)))
HDAC_genes[ , 1] <- c(gene_up, gene_down)
rownames(HDAC_genes) <- HDAC_genes[ , 1]
HDAC <- HDAC_genes[ , 2]
names(HDAC) <- rownames(HDAC_genes)

drug.perturbation <- PharmacoGx::downloadPertSig("CMAP")
dimnames(drug.perturbation)[[1]] <- gsub("_at", "", dimnames(drug.perturbation)[[1]])

message("Be aware that computing sensitivity will take some time...")
cl <- parallel::makeCluster(2)
res <- parApply(drug.perturbation[ , , c("tstat", "fdr")], 2, function(x, HDAC){

return(PharmacoGx::connectivityScore(x=x, y=HDAC, method="gsea", nperm=100))
}, cl=cl, HDAC=HDAC)
stopCluster(cl)
rownames(res) <- c("Connectivity", "P Value")
res <- t(res)

res <- apply(drug.perturbation[ , , c("tstat", "fdr")], 2, function(x, HDAC){
return(PharmacoGx::connectivityScore(x=x, y=HDAC, method="gsea", nperm=100))

}, HDAC=HDAC)
rownames(res) <- c("Connectivity", "P Value")
res <- t(res)

HDAC_inhibitors <- c("vorinostat", "trichostatin A", "HC toxin", "valproic acid")
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res <- res[order(res[,1], decreasing=T), ]
HDAC_ranks <- which(rownames(res) %in% HDAC_inhibitors)

14.9 Session Info

This document was generated with the following R version and packages loaded:
sessionInfo()

#> R version 3.5.0 (2018-04-23)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Debian GNU/Linux 9 (stretch)
#>
#> Matrix products: default
#> BLAS: /usr/lib/openblas-base/libblas.so.3
#> LAPACK: /usr/lib/libopenblasp-r0.2.19.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=C
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats4 parallel stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] hgu133a.db_3.2.3 org.Hs.eg.db_3.6.0 AnnotationDbi_1.43.1
#> [4] IRanges_2.15.16 S4Vectors_0.19.19 randomForest_4.6-14
#> [7] caret_6.0-80 glmnet_2.0-16 foreach_1.4.4
#> [10] Matrix_1.2-14 Hmisc_4.1-1 Formula_1.2-3
#> [13] lattice_0.20-35 mRMRe_2.0.7 igraph_1.2.1
#> [16] survival_2.42-6 xtable_1.8-2 reshape2_1.4.3
#> [19] ggplot2_3.0.0 Biobase_2.41.2 BiocGenerics_0.27.1
#> [22] PharmacoGxML_0.1.0 mCI_0.1.0 PharmacoGx_1.11.0
#>
#> loaded via a namespace (and not attached):
#> [1] NISTunits_1.0.1 backports_1.1.2 fastmatch_1.1-0
#> [4] sm_2.2-5.5 plyr_1.8.4 lazyeval_0.2.1
#> [7] splines_3.5.0 BiocParallel_1.15.8 SnowballC_0.5.1
#> [10] digest_0.6.15 htmltools_0.3.6 gdata_2.18.0
#> [13] magrittr_1.5 checkmate_1.8.5 memoise_1.1.0
#> [16] cluster_2.0.7-1 sfsmisc_1.1-2 limma_3.37.3
#> [19] recipes_0.1.3 gower_0.1.2 celestial_1.4.1
#> [22] dimRed_0.1.0 piano_1.21.0 colorspace_1.3-2
#> [25] blob_1.1.1 xfun_0.3 dplyr_0.7.6
#> [28] tcltk_3.5.0 crayon_1.3.4 bindr_0.1.1
#> [31] iterators_1.0.10 glue_1.3.0 DRR_0.0.3
#> [34] gtable_0.2.0 ipred_0.9-6 kernlab_0.9-26
#> [37] ddalpha_1.3.4 DEoptimR_1.0-8 maps_3.3.0
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#> [40] abind_1.4-5 scales_0.5.0 DBI_1.0.0
#> [43] relations_0.6-8 Rcpp_0.12.18 plotrix_3.7-2
#> [46] htmlTable_1.12 magic_1.5-8 foreign_0.8-71
#> [49] bit_1.1-14 mapproj_1.2.6 lava_1.6.2
#> [52] prodlim_2018.04.18 htmlwidgets_1.2 fgsea_1.7.1
#> [55] gplots_3.0.1 RColorBrewer_1.1-2 acepack_1.4.1
#> [58] pkgconfig_2.0.1 nnet_7.3-12 tidyselect_0.2.4
#> [61] labeling_0.3 rlang_0.2.1 munsell_0.5.0
#> [64] tools_3.5.0 downloader_0.4 RSQLite_2.1.1
#> [67] pls_2.6-0 broom_0.5.0 evaluate_0.11
#> [70] geometry_0.3-6 stringr_1.3.1 yaml_2.1.19
#> [73] ModelMetrics_1.1.0 knitr_1.20 bit64_0.9-7
#> [76] robustbase_0.93-1.1 caTools_1.17.1.1 purrr_0.2.5
#> [79] RANN_2.6 bindrcpp_0.2.2 nlme_3.1-137
#> [82] slam_0.1-43 RcppRoll_0.3.0 pracma_2.1.4
#> [85] BiocStyle_2.9.3 compiler_3.5.0 rstudioapi_0.7
#> [88] marray_1.59.0 tibble_1.4.2 stringi_1.2.4
#> [91] highr_0.7 pillar_1.3.0 magicaxis_2.0.3
#> [94] data.table_1.11.4 bitops_1.0-6 R6_2.2.2
#> [97] latticeExtra_0.6-28 bookdown_0.7 KernSmooth_2.23-15
#> [100] gridExtra_2.3 lsa_0.73.1 codetools_0.2-15
#> [103] MASS_7.3-50 gtools_3.8.1 assertthat_0.2.0
#> [106] CVST_0.2-2 rprojroot_1.3-2 withr_2.1.2
#> [109] grid_3.5.0 rpart_4.1-13 timeDate_3043.102
#> [112] tidyr_0.8.1 class_7.3-14 rmarkdown_1.10
#> [115] sets_1.0-18 lubridate_1.7.4 base64enc_0.1-3



Chapter 15

500: Effectively using the
DelayedArray framework to support
the analysis of large datasets

Authors: Peter Francis Hickey1, Last modified: 19 June, 2018.

15.1 Overview

15.1.1 Description

This workshop will teach the fundamental concepts underlying the DelayedArray framework and related
infrastructure. It is intended for package developers who want to learn how to use the DelayedArray framework
to support the analysis of large datasets, particularly through the use of on-disk data storage.

The first part of the workshop will provide an overview of the DelayedArray infrastructure and introduce
computing on DelayedArray objects using delayed operations and block-processing. The second part of the
workshop will present strategies for adding support for DelayedArray to an existing package and extending
the DelayedArray framework.

Students can expect a mixture of lecture and question-and-answer session to teach the fundamental concepts.
There will be plenty of examples to illustrate common design patterns for writing performant code, although
we will not be writing much code during the workshop.

15.1.2 Pre-requisites

• Solid understanding of R
• Familiarity with common operations on arrays (e.g., colSums() and those available in the matrixStats

package)
• Familiarity with object oriented programming, particularly S4, will be useful but is not essential
• No familiarity required of technical details of particular data storage backends (e.g., HDF5, sparse

matrices)
• No familiarity required of particular biological techniques (e.g., single-cell RNA-seq)

1Department of Biostatistics, Johns Hopkins University
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15.1.3 Participation

Questions and discussion are encouraged! This will be especially important to guide the second half of the
worshop which focuses on integrating DelayedArray into an existing or new Bioconductor package. Students
will be expected to be able to follow and reason about example R code.

15.1.4 R / Bioconductor packages used

• DelayedArray
• HDF5Array
• SummarizedExperiment
• DelayedMatrixStats
• beachmat

15.1.5 Time outline

Activity Time
Introductory slides 15m
Part 1: Overview of DelayedArray framework 45m
Part 2: Incoporating DelayedArray into a package 45m
Questions and discussion 15m

15.1.6 Workshop goals and objectives

15.1.6.1 Learning goals

• Identify when it is useful to use a DelayedArray instead of an ordinary array or other array-like data
structure.

• Become familiar with the fundamental concepts of delayed operations, block-processing, and realization.
• Learn of existing functions and packages for constructing and computing on DelayedArray objects,

avoiding the need to re-invent the wheel.
• Learn common design patterns for writing performant code that operates on a DelayedArray.
• Evaluate whether an existing function that operates on an ordinary array can be readily adapted to

work on a DelayedArray.
• Reason about potential bottlenecks in algorithms operating on DelayedArray objects.

15.1.6.2 Learning objectives

• Understand the differences between a DelayedArray instance and an instance of a subclass (e.g.,
HDF5Array, RleArray).

• Know what types of operations ‘degrade’ an instance of a DelayedArray subclass to a DelayedArray, as
well as when and why this matters.

• Construct a DelayedArray:
• From an in-memory array-like object.
• From an on-disk data store (e.g., HDF5).
• From scratch by writing data to a RealizationSink.
• Take a function that operates on rows or columns of a matrix and apply it to a DelayedMatrix.
• Use block-processing on a DelayedArray to compute:
• A univariate (scalar) summary statistic (e.g., max()).



15.2. INTRODUCTORY MATERIAL 343

Figure 15.1: The SummarizedExperiment class is used to store rectangular arrays of experimental results
(assays). Although each assay is here drawn as a matrix, higher-dimensional arrays are also supported.

• A multivariate (vector) summary statistic (e.g., colSums() or rowMeans()).
• A multivariate (array-like) summary statistic (e.g., rowRanks()).
• Design an algorithm that imports data into a DelayedArray.

15.2 Introductory material

Data from a high-throughput biological assay, such as single-cell RNA-sequencing (scRNA-seq), will often
be summarised as a matrix of counts, where rows correspond to features and columns to samples2. Within
Bioconductor, the SummarizedExperiment class is the recommended container for such data, offering a rich
interface that tightly links assay measurements to data on the features and the samples.

Traditionally, the assay data are stored in-memory as an ordinary array object3. Storing the data in-memory
becomes a real pain with the ever-growing size of ’omics datasets; it is now not uncommon to collect

2Higher-dimensional arrays may be appropriate for some types of assays.
3In R, a matrix is just a 2-dimensional array
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10, 000 − 100, 000, 000 measurements on 100 − 1, 000, 000 samples, which would occupy 10 − 1, 000 gigabytes
(GB) if stored in-memory as ordinary R arrays!

Let’s take as an example some single-cell RNA-seq data on 1.3 million brain cells from embryonic mice,
generated by 10X Genomics4.
library(TENxBrainData)
# NOTE: This will download the data and may take a little while on the first
# run. The result will be cached, however, so subsequent runs are near
# instantaneous.
tenx <- TENxBrainData()
# The data are stored in a SingleCellExperiment, an extension of the
# SummarizedExperiment class.
class(tenx)
#> [1] "SingleCellExperiment"
#> attr(,"package")
#> [1] "SingleCellExperiment"
dim(tenx)
#> [1] 27998 1306127

# How big much memory do the counts data use?
counts <- assay(tenx, "counts", withDimnames = FALSE)
print(object.size(counts))
#> 2144 bytes

The counts data only require a tiny amount of RAM despite it having 27998 rows and 1306127 columns. And
the counts object still “feels” like an ordinary R matrix:
# Oooh, pretty-printing.
counts
#> <27998 x 1306127> HDF5Matrix object of type "integer":
#> [,1] [,2] [,3] [,4] ... [,1306124]
#> [1,] 0 0 0 0 . 0
#> [2,] 0 0 0 0 . 0
#> [3,] 0 0 0 0 . 0
#> [4,] 0 0 0 0 . 0
#> [5,] 0 0 0 0 . 0
#> ... . . . . . .
#> [27994,] 0 0 0 0 . 0
#> [27995,] 1 0 0 2 . 0
#> [27996,] 0 0 0 0 . 0
#> [27997,] 0 0 0 0 . 0
#> [27998,] 0 0 0 0 . 0
#> [,1306125] [,1306126] [,1306127]
#> [1,] 0 0 0
#> [2,] 0 0 0
#> [3,] 0 0 0
#> [4,] 0 0 0
#> [5,] 0 0 0
#> ... . . .
#> [27994,] 0 0 0
#> [27995,] 1 0 0
#> [27996,] 0 0 0
#> [27997,] 0 0 0

4These data are available in the TENxBrainData Bioconductor package
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#> [27998,] 0 0 0

# Let's take a subset of the data
counts[1:10, 1:10]
#> <10 x 10> DelayedMatrix object of type "integer":
#> [,1] [,2] [,3] [,4] ... [,7] [,8] [,9] [,10]
#> [1,] 0 0 0 0 . 0 0 0 0
#> [2,] 0 0 0 0 . 0 0 0 0
#> [3,] 0 0 0 0 . 0 0 0 0
#> [4,] 0 0 0 0 . 0 0 0 0
#> [5,] 0 0 0 0 . 0 0 0 0
#> [6,] 0 0 0 0 . 0 0 0 0
#> [7,] 0 0 0 0 . 0 0 0 0
#> [8,] 0 0 0 0 . 2 0 1 1
#> [9,] 0 0 1 0 . 0 0 0 0
#> [10,] 0 0 0 0 . 0 0 0 0

# Let's compute column sums (crude library sizes) for the first 100 samples.
# TODO: DelayedArray:: prefix shouldn't be necessary
DelayedArray::colSums(counts[, 1:100])
#> [1] 4046 2087 4654 3193 8444 11178 2375 3672 3115 4592 7899
#> [12] 5474 2894 5887 8349 7310 3340 23410 7326 3446 4601 5921
#> [23] 4746 3063 3879 3582 2854 4053 6987 9155 3747 1534 6632
#> [34] 4099 2846 5025 6688 3742 2982 1998 1808 3121 10561 3874
#> [45] 4143 1500 2280 3060 4325 3161 2522 1979 6033 3721 2546
#> [56] 6317 2756 3896 4475 5580 1879 8746 4873 2202 4517 2815
#> [67] 3809 2580 4655 3523 4717 6436 2434 5704 2962 11654 4848
#> [78] 5288 6689 5761 11539 15745 2986 2736 3666 2476 2251 3052
#> [89] 5480 1721 4166 4451 1893 5606 2551 2810 1555 1840 2972
#> [100] 2404

The reason for the small memory footprint and matrix-like “feel” of the counts object is because the counts
data are in fact stored on-disk in a Hierarchical Data Format (HDF5) file and we are interacting with the
data via the DelayedArray framework.

15.2.1 Discussion

TODO: Make these ‘discussions/challenges’ into a boxes that visually break out

• Talk with your neighbour about the sorts of ‘big data’ you are analysing, the challenges you’ve faced,
and strategies you’re using to tackle this.

• TODO: (keep this?) Play around with the tenx and counts data. Could use this to demonstrate the
upcoming challenges of chunking (e.g., compute row-wise summary).

TABLE gives some examples of contemporary experiments and the memory requirements if these data are
to be stored in-memory as ordinary R arrays.

Assay Size ‘nrow‘ ‘ncol‘ Number of assays Type Reference
WGBS (mCG) 67.992 GB 29,307,073 145 3 2 x dense integer, 1 x dense double eGTEx (unpublished)
scRNA-seq 146.276 GB 27,998 1,306,127 1 sparse integer https://bioconductor.org/packages/TENxBrainData/

There are various strategies for handling such large data in R. For example, we could use:

1. Sparse matrices for single-cell RNA-seq data.
2. Run length encoded vectors for ChIP-seq coverage profiles.
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3. Storing data on disk, and only bringing into memory as required, for whole genome methylation data5.

Each of these approaches has its strengths, as well as weaknesses and idiosyncrasies. For example,

• Matrix doesn’t support long vectors
• Sparsity is readily lost (e.g., normalization often destroys it)
• etc.

TODO: Lead discussion of limitations

15.2.2 Why learn DelayedArray?

The high-level goals of the DelayedArray framework are:

• Provide a common R interface to array-like data, where the data may be in-memory or on-disk.
• Support delayed operations, which avoid doing any computation until the result is required.
• Support block-processing of the data, which enables bounded-memory and parallel computations.

From the DelayedArray DESCRIPTION:

TODO: Use desc to extract Description field?

Wrapping an array-like object (typically an on-disk object) in a DelayedArray object allows one
to perform common array operations on it without loading the object in memory. In order to
reduce memory usage and optimize performance, operations on the object are either delayed or
executed using a block processing mechanism. Note that this also works on in-memory array-like
objects like DataFrame objects (typically with Rle columns), Matrix objects, and ordinary arrays
and data frames. (https://bioconductor.org/packages/release/bioc/html/DelayedArray.html)

These goals are similar to that of the tibble and dplyr packages:

A tibble, or tbl_df, is a modern reimagining of the data.frame, keeping what time has proven
to be effective, and throwing out what is not. Tibbles are data.frames that are lazy and surly
(http://tibble.tidyverse.org/#overview)

dplyr is designed to abstract over how the data is stored. That means as well as working with
local data frames, you can also work with remote database tables, using exactly the same R code.
(https://dplyr.tidyverse.org/#overview)

An important feature of the DelayedArray framework is that it supports all these strategies, and more, with a
common interface that aims to feel like the interface to ordinary arrays, which provides familiarity to R users.

15.2.2.1 Learning goal

• Identify when it is useful to use a DelayedArray instead of an ordinary array or other array-like data
structure.

15.3 Overview of DelayedArray framework

The core of DelayedArray framework is implemented in the DelayedArray Bioconductor package. Other
packages extend the framework or simply use it as is to enable analyses of large datasets.

5This strategy can also be effectively applied to sparse and repetitive data by using on-disk compression of the data.

https://bioconductor.org/packages/release/bioc/html/DelayedArray.html
http://tibble.tidyverse.org/#overview
https://dplyr.tidyverse.org/#overview
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15.3.1 The DelayedArray package

The DelayedArray package defines the key classes, generics, and methods6, as well as miscellaneous helper
functions, that implement the DelayedArray framework.

The reverse dependencies of DelayedArray are shown below:

The above figures includes packages that extend the DelayedArray framework in various ways, as well as
those that simply use the DelayedArray framework to analyse specific types of ’omics data. We briefly discuss
some of these:

15.3.1.1 Packages that extend DelayedArray

There are two ways a package may extend the DelayedArray framework. The first kind of package adds
support for a new realization backend (TODO Define?). Examples of this are:

• The HDF5Array package adds the HDF5Array realization backend for accessing and creating data
stored on-disk in an HDF5 file. This is typically used for on-disk representation of multidimensional
(numeric) arrays.

• The GDSArray package adds the GDSArray backend for accessing and creating data stored on-disk
in a GDS file. This is typically used for on-disk representation of genotyping or sequence data.

• The rhdf5client packages adds the H5S_Array realization backend for accessing and creating data
stored on a HDF Server, a Python-based web service that can be used to send and receive HDF5
data using an HTTP-based REST interface. This is typically used for on-disk representation of
multidimensional (numeric) arrays that need to be shared with multiple users from a central location.

6The DelayedArray package, like all core Bioconductor packages, uses the S4 object oriented programming system.

http://adv-r.had.co.nz/OO-essentials.html#s4
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The second kind of package adds methods for computing on DelayedArray instances. Examples of this are:

• The DelayedMatrixStats package provides methods for computing commonly used row- and column-
wise summaries of a 2-dimensional DelayedArray.

• The beachmat package provides a consistent C++ class interface for a variety of commonly used
matrix types, including ordinary R arrays, sparse matrices, and DelayedArray with various backends.

• The kmknn package provides methods for performing k-means for k-nearest neighbours of data stored
in a DelayedArray.

• Packages for performing matrix factorizations, (generalized) linear regression, , etc. (work in progress)

15.3.1.2 Packages that use DelayedArray

• The bsseq package uses the DelayedArray framework to support the analysis of large whole-genome
bisulfite methylation sequencing experiments.

• TODO: minfi, scater, scran, others

15.3.2 The DelayedArray class

The DelayedArray class is the key data structure that end users of the DelayedArray framework will interact
with. A DelayedMatrix is the same thing as a two-dimensional DelayedArray, just as a matrix is the same
thing as a two-dimensional array.

The DelayedArray class has a single slot called the seed. This name is evocative, it is the core of the object.

A package developer may create a subclass of DelayedArray; we will make extensive use of the HDF5Array
class, for example.
# TODO: Graphical representation of this network?
# TODO: Illustrate How classes depend on one another
# a. with DelayedArray as the root
# b. With DelayedArray as the leaf
showClass(getClass("DelayedArray", where = "DelayedArray"))
#> Class "DelayedArray" [package "DelayedArray"]
#>
#> Slots:
#>
#> Name: seed
#> Class: ANY
#>
#> Extends:
#> Class "DelayedUnaryOp", directly
#> Class "DelayedOp", by class "DelayedUnaryOp", distance 2
#> Class "Array", by class "DelayedUnaryOp", distance 3
#>
#> Known Subclasses:
#> Class "DelayedMatrix", directly, with explicit coerce
#> Class "DelayedArray1", directly
#> Class "RleArray", directly
#> Class "RleMatrix", by class "DelayedMatrix", distance 2
showClass(getClass("HDF5Array", where = "HDF5Array"))
#> Class "HDF5Array" [package "HDF5Array"]
#>
#> Slots:
#>
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#> Name: seed
#> Class: ANY
#>
#> Extends:
#> Class "DelayedArray", directly
#> Class "DelayedUnaryOp", by class "DelayedArray", distance 2
#> Class "DelayedOp", by class "DelayedArray", distance 3
#> Class "Array", by class "DelayedArray", distance 4
#>
#> Known Subclasses:
#> Class "HDF5Matrix", directly, with explicit coerce

15.3.2.1 Learning objectives

In this section, we’ll learn how an end user can construct a DelayedArray from:

• An in-memory array-like object.
• A local, on-disk data store, such as an HDF5 file.
• A remote data store, such as from a HDF Server.

We’ll also learn:

• What defines the “seed contract”
• What types of operations ‘degrade’ an instance of a DelayedArray subclass to a DelayedArray, as well

as when and why this matters (TODO Save the when and why it matters to later?).

15.3.2.2 The seed of a DelayedArray

From an end user’s perspective, there are a two broad categories of seed:

1. In-memory seeds
2. Out-of-memory seeds

a. Local, on-disk seeds
b. Remote (in-memory or on-disk) seeds

TODO: Box this out as an aside

For a developer’s perspective, there’s a third category of seed that is defined by the DelayedOp
class. Instances of the DelayedOp class are not intended to be manipulated directly by the end
user, but they are central to the concept of delayed operations, which we will learn about later
(TODO: Link to section).

A seed must implement the “seed contract”7:

• dim(x): Return the dimensions of the seed.
• dimnames(x): Return the (possibly NULL) dimension names of the seed.
• extract_array(x, index): Return a slice, specified by index, of the seed as an ordinary R array.

15.3.2.3 In-memory seeds

To begin, we’ll consider a DelayedArray instance with the simplest seed, an in-memory array:
7For further details, see the vignette in the DelayedArray package (available via vignette("02-Implementing_a_backend",

"DelayedArray"))
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library(DelayedArray)

mat <- matrix(rep(1:20, 1:20), ncol = 2)
da_mat <- DelayedArray(seed = mat)
da_mat
#> <105 x 2> DelayedMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

We can use other, more complex, array-like objects as the seed, such as Matrix objects from the Matrix
package:
library(Matrix)
#>
#> Attaching package: 'Matrix'
#> The following object is masked from 'package:S4Vectors':
#>
#> expand
Mat <- Matrix(mat)
da_Mat <- DelayedArray(seed = Mat)
# NOTE: The type is "double" because of how the Matrix package stores the data.
da_Mat
#> <105 x 2> DelayedMatrix object of type "double":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

We can even use data frames as the seed of a two-dimensional DelayedArray.
df <- as.data.frame(mat)
da_df <- DelayedArray(seed = df)
# NOTE: This inherits the (default) column names of the data.frame.
da_df
#> <105 x 2> DelayedMatrix object of type "integer":
#> V1 V2
#> 1 1 15
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#> 2 2 15
#> 3 2 15
#> 4 3 15
#> 5 3 15
#> ... . .
#> 101 14 20
#> 102 14 20
#> 103 14 20
#> 104 14 20
#> 105 14 20

library(tibble)
tbl <- as_tibble(mat)
da_tbl <- DelayedArray(seed = tbl)
# NOTE: This inherits the (default) column names of the tibble.
da_tbl
#> <105 x 2> DelayedMatrix object of type "integer":
#> V1 V2
#> 1 1 15
#> 2 2 15
#> 3 2 15
#> 4 3 15
#> 5 3 15
#> ... . .
#> 101 14 20
#> 102 14 20
#> 103 14 20
#> 104 14 20
#> 105 14 20

DF <- as(mat, "DataFrame")
da_DF <- DelayedArray(seed = DF)
# NOTE: This inherits the (default) column names of the DataFrame.
da_DF
#> <105 x 2> DelayedMatrix object of type "integer":
#> V1 V2
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

A package developer can also implement a novel in-memory seed. For example, the DelayedArray package
defines the RleArraySeed class8. This can be used as the seed of an RleArray, a DelayedArray subclass for
storing run-length encoded data.

8In fact, the RleArraySeed class is a virtual class, with concrete subclasses SolidRleArraySeed and ChunkedRleArraySeed
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# NOTE: The DelayedArray package does not expose the RleArraySeed() constructor.
# Instead, we directly call the RleArray() constructor on the run-length
# encoded data.
da_Rle <- RleArray(rle = Rle(mat), dim = dim(mat))
da_Rle
#> <105 x 2> RleMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

The RleArray examples illustrates some important concepts in the DelayedArray class hierarchy that warrants
reiteration and expansion.

15.3.2.4 Degrading DelayedArray subclasses

The da_Rle object is an RleMatrix, a direct subclass of RleArray and a direct subclass of DelayedMatrix.
Both RleArray and DelayedMatrix are direct subclasses of a DelayedArray. As such, in accordance with
properties of S4 class inheritance, an RleMatrix is a DelayedArray.
da_Rle
#> <105 x 2> RleMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20
is(da_Rle, "DelayedArray")
#> [1] TRUE
showClass(getClass("RleMatrix", where = "DelayedArray"))
#> Class "RleMatrix" [package "DelayedArray"]
#>
#> Slots:
#>
#> Name: seed
#> Class: ANY
#>
#> Extends:
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#> Class "DelayedMatrix", directly
#> Class "RleArray", directly
#> Class "DelayedArray", by class "DelayedMatrix", distance 2
#> Class "DelayedUnaryOp", by class "DelayedMatrix", distance 2
#> Class "DelayedOp", by class "DelayedMatrix", distance 2
#> Class "Array", by class "DelayedMatrix", distance 2
#> Class "DataTable", by class "DelayedMatrix", distance 2
#> Class "DataTable_OR_NULL", by class "DelayedMatrix", distance 3

However, if we do (almost) anything to the RleMatrix, the result is ‘degraded’ to a DelayedMatrix. This
‘degradation’ isn’t an issue in and of itself, but it can be surprising and can complicate writing functions that
expect a certain type of input (e.g., S4 methods).
# NOTE: Adding one to each element will 'degrade' the result.
da_Rle + 1L
#> <105 x 2> DelayedMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 2 16
#> [2,] 3 16
#> [3,] 3 16
#> [4,] 4 16
#> [5,] 4 16
#> ... . .
#> [101,] 15 21
#> [102,] 15 21
#> [103,] 15 21
#> [104,] 15 21
#> [105,] 15 21
is(da_Rle + 1L, "RleMatrix")
#> [1] FALSE

# NOTE: Subsetting will 'degrade' the result.
da_Rle[1:10, ]
#> <10 x 2> DelayedMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> [6,] 3 15
#> [7,] 4 15
#> [8,] 4 15
#> [9,] 4 15
#> [10,] 4 15
is(da_Rle[1:10, ], "RleMatrix")
#> [1] FALSE

# NOTE: Changing the dimnames will 'degrade' the result.
da_Rle_with_dimnames <- da_Rle
colnames(da_Rle_with_dimnames) <- c("A", "B")
da_Rle_with_dimnames
#> <105 x 2> DelayedMatrix object of type "integer":
#> A B
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#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20
is(da_Rle_with_dimnames, "RleMatrix")
#> [1] FALSE

# NOTE: Transposing will 'degrade' the result.
t(da_Rle)
#> <2 x 105> DelayedMatrix object of type "integer":
#> [,1] [,2] [,3] [,4] ... [,102] [,103] [,104] [,105]
#> [1,] 1 2 2 3 . 14 14 14 14
#> [2,] 15 15 15 15 . 20 20 20 20
is(t(da_Rle), "RleMatrix")
#> [1] FALSE

# NOTE: Even adding zero (conceptually a no-op) will 'degrade' the result.
da_Rle + 0L
#> <105 x 2> DelayedMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

There are some exceptions to this rule, when the DelayedArray framework can recognise/guarantee that the
operation is a no-op that will leave the object in its current state:
# NOTE: Subsetting to select the entire object does not 'degrade' the result.
da_Rle[seq_len(nrow(da_Rle)), seq_len(ncol(da_Rle))]
#> <105 x 2> RleMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
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#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20
is(da_Rle[seq_len(nrow(da_Rle)), seq_len(ncol(da_Rle))], "RleMatrix")
#> [1] TRUE

# NOTE: Transposing and transposing back does not 'degrade' the result.
t(t(da_Rle))
#> <105 x 2> RleMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20
is(t(t(da_Rle)), "RleMatrix")
#> [1] TRUE

A particularly important example of this ‘degrading’ to be aware of is when accessing the assays of a
SummarizedExperiment via the assay() and assays() getters. Each of these getters has an argument
withDimnames with a default value of TRUE; this copies the dimnames of the SummarizedExperiment to
the returned assay. Consequently, this may ‘degrade’ the object(s) returned by assay() and assays() to
DelayedArray. To avoid this, use withDimnames = FALSE in the call to assay() and assays().
library(SummarizedExperiment)
# Construct a SummarizedExperiment with column names 'A' and 'B' and da_Rle as
# the assay data.
se <- SummarizedExperiment(da_Rle, colData = DataFrame(row.names = c("A", "B")))
se
#> class: SummarizedExperiment
#> dim: 105 2
#> metadata(0):
#> assays(1): ''
#> rownames: NULL
#> rowData names(0):
#> colnames(2): A B
#> colData names(0):

# NOTE: dimnames are copied, so the result is 'degraded'.
assay(se)
#> <105 x 2> DelayedMatrix object of type "integer":
#> A B
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
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#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20
is(assay(se), "RleMatrix")
#> [1] FALSE

# NOTE: dimnames are not copied, so the result is not 'degraded'.
assay(se, withDimnames = FALSE)
#> <105 x 2> RleMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20
is(assay(se, withDimnames = FALSE), "RleMatrix")
#> [1] TRUE

As noted up front, the degradation isn’t in and of itself a problem. However, if you are passing an object to a
function that expects an RleMatrix, for example, some care needs to be taken to ensure that the object isn’t
accidentally ‘degraded’ along the way to a DelayedMatrix.

To summarise, the lessons here are:

• Modifying an instance of a DelayedArray subclass will almost always ‘degrade’ it to a DelayedArray.
• It is very easy to accidentally trigger this ‘degradation’.
• This ‘degradation’ can complicate method dispatch.

15.3.2.5 Out-of-memory seeds

The DelayedArray framework really shines when working with out-of-memory seeds. It can give the user the
“feel” of interacting with an ordinary R array but allows for the data to be stored on a local disk or even on a
remote server, thus reducing (local) memory usage.

15.3.2.5.1 Local on-disk seeds

The HDF5Array package defines the HDF5Array class, a DelayedArray subclass for data stored on disk
in a HDF5 file. The seed of an HDF5Array is a HDF5ArraySeed. It is important to note that creating a
HDF5Array does not read the data into memory! The data remain on disk until requested (we’ll see how to
do this later on in the workshop).
library(HDF5Array)

hdf5_file <- file.path(
"500_Effectively_Using_the_DelayedArray_Framework",
"hdf5_mat.h5")
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# NOTE: We can use rhdf5::h5ls() to take a look what is in the HDF5 file.
# This is very useful when working interactively!
rhdf5::h5ls(hdf5_file)
#> group name otype dclass dim
#> 0 / hdf5_mat H5I_DATASET INTEGER x 2

# We can create the HDF5Array by first creating a HDF5ArraySeed and then
# creating the HDF5Array.
hdf5_seed <- HDF5ArraySeed(filepath = hdf5_file, name = "hdf5_mat")
da_hdf5 <- DelayedArray(seed = hdf5_seed)
da_hdf5
#> <105 x 2> HDF5Matrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

# Alternatively, we can create this in one go using the HDF5Array() constructor.
da_hdf5 <- HDF5Array(filepath = hdf5_file, name = "hdf5_mat")
da_hdf5
#> <105 x 2> HDF5Matrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

Other on-disk seeds are possible such as fst, bigmemory, ff, or matter.

15.3.2.5.2 Remote seeds

The rhdf5client packages defines the H5S_Array class, a DelayedArray subclass for data stored on a remote
HDF Server. The seed of an H5S_Array is a H5S_ArraySeed. It is important to note that creating a
H5S_Array does not read the data into memory! The data remain on the server until requested.
library(rhdf5client)
#>
#> Attaching package: 'rhdf5client'
#> The following object is masked from 'package:tidygraph':
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#>
#> groups
da_h5s <- HSDS_Matrix(URL_hsds(), "/home/stvjc/hdf5_mat.h5")
da_h5s
#> <105 x 2> H5S_Matrix object of type "double":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20

15.3.2.6 So what seed should I use?

Notably, da_mat, da_Mat, da_tbl, da_df, da_Rle, da_hdf5, and da_h5s all “look” and “feel” much the same.
The DelayedArray is a very light wrapper around the seed that formalises this consistent “look” and “feel”.

If your data always fit in memory, and it’s still comfortable to work with it interactively, then you should
probably stick with using ordinary matrix and array objects. If, however, your data sometimes don’t fit in
memory or it becomes painful to work with them when they are in-memory, you should consider a disk-backed
DelayedArray. If you need to share a large dataset with a number of uses, and most users only need slices of
it, you may want to consider a remote server-backed DelayedArray.

Not suprisingly, working with in-memory seeds will typically be faster than disk-backed or remote seeds; you
are trading off memory-usage and data access times to obtain faster performance.

Below are some further opinionated recommendations.

Although the DelayedArray is a light wrapper, it does introduce some overhead. For example, operations on
a DelayedArray with an array or Matrix seed will be slower than operating on the array or Matrix directly.
For some operations this is almost non-existant (e.g., seed-aware operations in the DelayedMatrixStats
package), but for others this overhead may be noticeable. Conversely, a potential upside to wrapping a Matrix
in a DelayedArray is that it can now leverage the block-processing strategy of the DelayedArray framework.

If you need a disk-backed DelayedArray, I would recommend using HDF5Array as the backend at this time.
HDF5 is a well-established scientific data format and the HDF5Array package is developed by the core
Bioconductor team. Furthermore, several bioinformatics tools natively export HDF5 files (e.g., kallisto,
CellRanger from 10x Genomics). One potential downside of HDF5 is the recent split into “Community” and
“Enterprise Support” editions. It’s not yet clear how this will affect the HDF5 library or its community. Other
on-disk backends may not yet have well-established formats or libraries (e.g., TileDB). A topic of on-going
research in the Bioconductor community is to compare the performance of HDF5 to other disk-backed data
stores. Another topic is how to best choose the layout of the data on disk, often referred to as the “chunking”
of the data. For example, if the data is stored in column-major order then it might be expected that row-wise
data access suffers.

One final comment. If you are trying to support both in-memory and on-disk data, it may be worth considering
using DelayedArray for everything rather than trying to support both DelayedArray and ordinary arrays. This
is particularly true for internal, non-user facing code. Otherwise your software may need separate code paths
for array and DelayedArray inputs, although the need for separate branches is reducing. For example, when I
initially added support for the DelayedArray framework in bsseq (~2 years ago), I opted to remove support
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for ordinary arrays. However, more recently I added support for the DelayedArray framework in minfi, and
there I opted to maintain support for ordinary arrays. I’ve found that as the DelayedArray framework matures
and expands, it is increasingly common that the same code “just works” for both array and DelayedArray
objects. Maintaining support for ordinary arrays can also be critical for popular Bioconductor packages,
although this can be handled by having functions that accept an array as input simply wrapping them in a
DelayedArray for internal computations.

15.3.3 Operating on DelayedArray objects

Now that we know what a DelayedArray is, it’s various subclasses, and how to construct these, we will discuss
how to use operate on DelayedArray objects.

We’ll cover three fundamental concepts:

1. Delayed operations
2. Block-processing
3. Realization

These three concepts work hand-in-hand. Delayed operations are exactly that, the operation is recorded but
performing the operation is delayed until the result is required; realization is the process of executing the
delayed operations; and block-processing is used to perform operations, including realization, on blocks of the
DelayedArray.

15.3.3.1 Learning goals

• Become familiar with the fundamental concepts of delayed operations, block-processing, and realization.
• TODO Construct a DelayedArray from scratch by writing data to a RealizationSink.

15.3.3.2 Delayed operations

A delayed operation is one that is not actually performed until the result is required. Here’s a simple example
of a delayed operations: taking the negative of every element of a HDF5Matrix.
da_hdf5
#> <105 x 2> HDF5Matrix object of type "integer":
#> [,1] [,2]
#> [1,] 1 15
#> [2,] 2 15
#> [3,] 2 15
#> [4,] 3 15
#> [5,] 3 15
#> ... . .
#> [101,] 14 20
#> [102,] 14 20
#> [103,] 14 20
#> [104,] 14 20
#> [105,] 14 20
-da_hdf5
#> <105 x 2> DelayedMatrix object of type "integer":
#> [,1] [,2]
#> [1,] -1 -15
#> [2,] -2 -15
#> [3,] -2 -15
#> [4,] -3 -15
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#> [5,] -3 -15
#> ... . .
#> [101,] -14 -20
#> [102,] -14 -20
#> [103,] -14 -20
#> [104,] -14 -20
#> [105,] -14 -20

It may look like running -da_hdf5 has taken the negative of every element. However, we can see this is in
fact not the case by using the showtree() function to inspect the internal state of these objects9:
showtree(da_hdf5)
#> 105x2 integer: HDF5Matrix object
#> 105x2 integer: [seed] HDF5ArraySeed object

# NOTE: The "Unary iso op" line is 'recording' the `-` as a delayed operation.
showtree(-da_hdf5)
#> 105x2 integer: DelayedMatrix object
#> 105x2 integer: Unary iso op
#> 105x2 integer: [seed] HDF5ArraySeed object

To further illustrate the idea, let’s perform some delayed operations on a large HDF5Array and compare
them to performing the operations on the equivalent array.
library(h5vcData)

tally_file <- system.file("extdata", "example.tally.hfs5", package = "h5vcData")
x_h5 <- HDF5Array::HDF5Array(tally_file, "/ExampleStudy/16/Coverages")
x_h5
#> <6 x 2 x 90354753> HDF5Array object of type "integer":
#> ,,1
#> [,1] [,2]
#> [1,] 0 0
#> [2,] 0 0
#> ... . .
#> [5,] 0 0
#> [6,] 0 0
#>
#> ...
#>
#> ,,90354753
#> [,1] [,2]
#> [1,] 0 0
#> [2,] 0 0
#> ... . .
#> [5,] 0 0
#> [6,] 0 0
x <- as.array(x_h5)

# Delayed operations are fast compared to ordinary operations!
system.time(x_h5 + 100L)
#> user system elapsed
#> 0.004 0.000 0.005

9You may like to use the str() function for more detailed and verbose output
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Figure 15.2:

system.time(x + 100L)
#> user system elapsed
#> 2.468 1.628 4.098

# Delayed operations can be chained
system.time(t(x_h5[1, , 1:100] + 100L))
#> user system elapsed
#> 0.016 0.000 0.017

Rather than modifying the data stored in the HDF5 file, which can be costly for large datasets, we’ve recorded
the ‘idea’ of these operations as a tree of DelayedOp objects. Each node in the tree is represented by a
DelayedOp object, of which there are 6 concrete subclasses:

Node type Out-degree Operation
DelayedSubset 1 Multi-dimensional single bracket subsetting
DelayedAperm 1 Extended aperm() (can drop dimensions)
DelayedUnaryIsoOp 1 Unary op that preserves the geometry (e.g., -, log())
DelayedDimnames 1 Set dimnames
DelayedNaryIsoOp N N-ary op that preserves the geometry
DelayedAbind N abind()

15.3.3.3 Block-processing

Block-processing allows you to iterate over blocks of a DelayedArray in a manner that abstracts over the
backend.

The following cartoon illustrates the basic idea of block-processing:
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Figure 15.3:

Figure 15.4:
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Figure 15.5:

Figure 15.6:
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Figure 15.7:

Figure 15.8:
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To implement block-processing, we first construct an ArrayGrid over the DelayedArray. Each element
of the ArrayGrid is called an ArrayViewport. We iterate over the ArrayGrid, extract the corresponding
ArrayViewport, and load the data for that block into memory as an ordinary R array where it can be processed
using ordinary R functions.

In pseudocode, we might implement block processing as follows:
# Construct an ArrayGrid over 'x'.
# NOTE: blockGrid() is explained below.
grid <- blockGrid(x)
for (b in seq_along(grid)) {

# Construct an ArrayViewPort using the b-th element of the ArrayGrid.
viewport <- grid[[b]]
# Read the block of data using the current 'viewport' applied to 'x'.
block <- read_block(x, viewport)
# Apply our function to 'block' (which is an ordinary R array).
FUN(block)

}

In practice, when constructing the ArrayGrid for a particular operation, we need to consider a few issues:

1. Constraints on how much data we can bring into memory (the ‘maximum block length’).
2. The geometry of the ArrayGrid, which will control the order in which we access elements.
3. How the data are physically stored (‘chunking’ of the data on disk).

15.3.3.3.1 Maximum block length

There is a global option getOption("DelayedArray.block.size") for controlling how much data is brough
into memory with default value corresponding to each block containing a maximum of 45 Mb of data. It’s
good practice to respect this value, however, some algorithms may require this be ignored (e.g., if you require
a full column’s worth of data for each block).

15.3.3.3.2 Chunking and data structure

Regardless of the backend, the data will be stored with a particular structure. For example, ordinary R
arrays store the data in column-major order. The geometry of the data structure is especially relevant for
HDF5 files.

The HDF5 format supports ‘chunking’ of data to maximize data access performance. From https://support.
hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html:

Datasets in HDF5 can represent arrays with any number of dimensions (up to 32). However, in
the file this dataset must be stored as part of the 1-dimensional stream of data that is the low-level
file. The way in which the multidimensional dataset is mapped to the serial file is called the
layout. The most obvious way to accomplish this is to simply flatten the dataset in a way similar
to how arrays are stored in memory, serializing the entire dataset into a monolithic block on disk,
which maps directly to a memory buffer the size of the dataset. This is called a contiguous layout.

An alternative to the contiguous layout is the chunked layout. Whereas contiguous datasets are
stored in a single block in the file, chunked datasets are split into multiple chunks which are all
stored separately in the file. The chunks can be stored in any order and any position within
the HDF5 file. Chunks can then be read and written individually, improving performance when
operating on a subset of the dataset.

Although this sounds similar to the blocks used in block-processing, the two are distinct.

Chunks are used to determine how the data are stored, blocks are used to determine how the
data are accessed via the ArrayGrid. That is, you can use a different ArrayGrid geometry to the chunk

https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
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geometry, but performance may be suboptimal.

15.3.3.3.3 Geometry of the ArrayGrid

The ArrayGrid could be a regularly spaced grid (a RegularArrayGrid) or a grid with arbitrary spacing (an
ArbitraryArrayGrid).

TheDelayedArray package includes some helper functions for setting up ArrayGrid instances with particular
geometries and other properties.

The blockGrid() function returns the “optimal” ArrayGrid for block-processing. The grid is “optimal” in
the sense that:

• It’s “compatible” with the chunk grid (i.e. with chunkGrid(x) or with the chunk grid supplied via the
chunk.grid argument). That is, the chunks are contained in the blocks. In other words, chunks never
cross block boundaries.

• Its “resolution” is such that the blocks have a length that is as close as possible to (but does not exceed)
block.maxlength. An exception is when some chunks are already >= block.maxlength, in which
case the returned grid is the same as the chunk grid.

15.3.3.3.4 Block-processing in practice

In practice, most block-processing algorithms can be implemented by constructing an ArrayGrid with a
suitable geometry and then using DelayedArray::blockApply() or DelayedArray::blockReduce().

As an example, let’s compute row and column medians of da_hdf5. We’ll start by constructing ArrayGrid
instances over the rows and columns of da_hdf5.
# NOTE: Making block-processing verbose to show what's going on under the hood.
DelayedArray:::set_verbose_block_processing(TRUE)
#> [1] FALSE
system.time(

row_medians <- blockApply(
x = da_hdf5,
FUN = median,
grid = RegularArrayGrid(

refdim = dim(da_hdf5),
spacings = c(1L, ncol(da_hdf5)))))

#> user system elapsed
#> 0.120 1.212 1.822
head(row_medians)
#> [[1]]
#> [1] 8
#>
#> [[2]]
#> [1] 8.5
#>
#> [[3]]
#> [1] 8.5
#>
#> [[4]]
#> [1] 9
#>
#> [[5]]
#> [1] 9
#>
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#> [[6]]
#> [1] 9
system.time(

col_medians <- blockApply(
x = da_hdf5,
FUN = median,
grid = RegularArrayGrid(

refdim = dim(da_hdf5),
spacings = c(nrow(da_hdf5), 1L))))

#> user system elapsed
#> 0.064 0.112 0.257
head(col_medians)
#> [[1]]
#> [1] 10
#>
#> [[2]]
#> [1] 18

That works, but is somewhat slow for computing row maximums because we read from the HDF5 file
nrow(da_hdf5) ( 105) times. We would be better off loading multiple rows of data per block. There are
several ways to do this; here, we’ll use DelayedArray::blockGrid() to construct an optimal ArrayGrid and
matrixStats::rowMedians() and matrixStats::colMedians() to compute the row and column maximums.
system.time(

row_medians <- blockApply(
x = da_hdf5,
FUN = matrixStats::rowMedians,
grid = blockGrid(

x = da_hdf5,
block.shape = "first-dim-grows-first")))

#> Processing block 1/1 ... OK
#> user system elapsed
#> 0.02 0.00 0.02
head(row_medians)
#> [[1]]
#> [1] 8.0 8.5 8.5 9.0 9.0 9.0 9.5 9.5 9.5 9.5 10.0 10.0 10.0 10.0
#> [15] 10.0 11.0 11.0 11.0 11.0 11.0 11.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5
#> [29] 12.0 12.0 12.0 12.5 12.5 12.5 12.5 12.5 13.0 13.0 13.0 13.0 13.0 13.0
#> [43] 13.0 13.0 13.0 13.5 13.5 13.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.5
#> [57] 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 15.5 15.5 15.5 15.5
#> [71] 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5 16.0 16.0 16.0 16.0 16.0 16.0
#> [85] 16.0 16.5 16.5 16.5 16.5 16.5 16.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0
#> [99] 17.0 17.0 17.0 17.0 17.0 17.0 17.0
system.time(

col_medians <- blockApply(
x = da_hdf5,
FUN = matrixStats::colMedians,
grid = blockGrid(

x = da_hdf5,
block.shape = "last-dim-grows-first")))

#> Processing block 1/1 ... OK
#> user system elapsed
#> 0.020 0.000 0.018
head(col_medians)
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#> [[1]]
#> [1] 10 18

For larger problems, we can improve performance by processing blocks in parallel by passing an appropriate
BiocParallelParam object via the bpparam argument of blockApply() and blockReduce().

Although blockApply() and blockReduce() cover most of the block-processing tasks, sometimes you may
need to implement the block-processing at a lower level. For example, you may need to iterate over multiple
DelayedArray objects or your FUN returns an object equally large (or larger) than the block. The details of
these abstractions are still being worked out, but some likely candidates include methods that conceptually
do:

• blockMapply()
• blockApplyWithRealization()
• blockMapplyWithRealization()

15.3.3.4 Realization

Realization is the process of taking a DelayedArray, executing any delayed operations, and returning the
result as a new DelayedArray with the appropriate backend.

Returning to our earlier example with data from the h5vcData package:
x_h5
#> <6 x 2 x 90354753> HDF5Array object of type "integer":
#> ,,1
#> [,1] [,2]
#> [1,] 0 0
#> [2,] 0 0
#> ... . .
#> [5,] 0 0
#> [6,] 0 0
#>
#> ...
#>
#> ,,90354753
#> [,1] [,2]
#> [1,] 0 0
#> [2,] 0 0
#> ... . .
#> [5,] 0 0
#> [6,] 0 0
showtree(x_h5)
#> 6x2x90354753 integer: HDF5Array object
#> 6x2x90354753 integer: [seed] HDF5ArraySeed object
y <- t(x_h5[1, , 1:10000000] + 100L)
showtree(y)
#> 10000000x2 integer: DelayedMatrix object
#> 10000000x2 integer: Unary iso op
#> 10000000x2 integer: Aperm (perm=c(3,2))
#> 1x2x10000000 integer: Subset
#> 6x2x90354753 integer: [seed] HDF5ArraySeed object

# Realize the result in-memory
z <- realize(y, BACKEND = NULL)
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# NOTE: 'z' does not carry any delayed operations.
showtree(z)
#> 10000000x2 integer: DelayedMatrix object
#> 10000000x2 integer: [seed] matrix object

# Realize the result on-disk in an autogenerated HDF5 file
z_h5 <- realize(y, BACKEND = "HDF5Array")
#> Processing block 1/2 ... OK
#> Processing block 2/2 ... OK
# NOTE: 'z_h5' does not carry any delayed operations.
showtree(z_h5)
#> 10000000x2 integer: HDF5Matrix object
#> 10000000x2 integer: [seed] HDF5ArraySeed object
path(z_h5)
#> [1] "/tmp/RtmpoJVoyV/HDF5Array_dump/auto00001.h5"

# NOTE: The show() method performs realization on the first few and last few
# elements in order to preview the result
y
#> <10000000 x 2> DelayedMatrix object of type "integer":
#> [,1] [,2]
#> [1,] 100 100
#> [2,] 100 100
#> [3,] 100 100
#> [4,] 100 100
#> [5,] 100 100
#> ... . .
#> [9999996,] 100 100
#> [9999997,] 100 100
#> [9999998,] 100 100
#> [9999999,] 100 100
#> [10000000,] 100 100

Realization uses block-processing under the hood:
DelayedArray:::set_verbose_block_processing(TRUE)
#> [1] TRUE
realize(y, BACKEND = "HDF5Array")
#> Processing block 1/2 ... OK
#> Processing block 2/2 ... OK
#> <10000000 x 2> HDF5Matrix object of type "integer":
#> [,1] [,2]
#> [1,] 100 100
#> [2,] 100 100
#> [3,] 100 100
#> [4,] 100 100
#> [5,] 100 100
#> ... . .
#> [9999996,] 100 100
#> [9999997,] 100 100
#> [9999998,] 100 100
#> [9999999,] 100 100
#> [10000000,] 100 100
DelayedArray:::set_verbose_block_processing(FALSE)
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#> [1] TRUE

15.4 What’s out there already?

UP TO HERE

• DelayedMatrixStats
• beachmat

15.4.0.1 Learning goal

• Learn of existing functions and packages for constructing and computing on DelayedArray objects,
avoiding the need to re-invent the wheel.

15.5 Incoporating DelayedArray into a package

15.5.1 Writing algorithms to process DelayedArray instances

15.5.1.1 Learning goals

• Learn common design patterns for writing performant code that operates on a DelayedArray.
• Evaluate whether an existing function that operates on an ordinary array can be readily adapted to

work on a DelayedArray.
• Reason about potential bottlenecks in algorithms operating on DelayedArray objects.

15.5.1.2 Learning objectives

• Take a function that operates on rows or columns of a matrix and apply it to a DelayedMatrix.
• Use block-processing on a DelayedArray to compute:

– A univariate (scalar) summary statistic (e.g., max()).
– A multivariate (vector) summary statistic (e.g., colSum() or rowMean()).
– A multivariate (array-like) summary statistic (e.g., rowRanks()).
– Design an algorithm that imports data into a DelayedArray.

15.6 Questions and discussion

This section will be updated to address questions and to summarise the discussion from the presentation of
this workshop at BioC2018.

15.7 TODOs

• Use BiocStyle?
• Show packages depend on one another, with HDF5Array as the root (i.e. explain the HDF5 stack)
• Use suppressPackageStartupMessages() or equivalent.
• Note that we’ll be focusing on numerical array-like data, i.e. no real discussion of GDSArray.
• Remove memuse dependency
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• Link to my useR talk and slides
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Chapter 16

510: Maintaining your Bioconductor
package

16.1 Instructor name and contact information

• Nitesh Turaga1 (nitesh.turaga@roswellpark.org)

16.2 Workshop Description

Once an R package is accepted into Bioconductor, maintaining it is an active responsibility undertaken by the
package developers and maintainers. In this short workshop, we will cover how to maintain a Bioconductor
package using existing infrastructure. Bioconductor hosts a range of tools which maintainers can use such
as daily build reports, landing page badges, RSS feeds, download stats, support site questions, and the
bioc-devel mailing list. Some packages have their own continuous integration hook setup on their github
pages which would be an additional tool maintainers can use to monitor their package. We will also highlight
one particular git practice which need to be done while updating and maintaining your package on out git
system.

16.2.1 Pre-requisites

Accepted Bioconductor package or plans to contribute a Bioconductor package in the future.

16.2.2 Participation

Students will be expected to follow along with their laptops if they choose to, although it is not needed.

16.2.3 Time outline: 50 mins short workshop

• Introduction: 10 mins
– Why maintain your package
– Infrastructure used for maintenance

• Outline how to use infrastructure: 35 mins
1Roswell Park Comprehensive Cancer Center, Buffalo, NY
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– Build report
– Version numbering
– Landing page badges
– Download statistics
– RSS feeds
– Support site, Bioc-devel mailing list
– Github

∗ Sync package with Github / Bioconductor before every change
∗ Github issues

• Round up of resources available: 5 mins
• Acknowledgements

16.2.4 Workshop goals and objectives

• Gain knowledge of how to track Bioconductor packages via download statistics, RSS feeds.
• Understand the importance of supporting their user community and how to do so using the support

site and bioc-devel mailing list.
• Maintain their package and fix bugs using build reports, continuous integration tools.
• Update their package consistently on both Github and Bioconductor private git server.

16.3 Introduction

Maintainer - Who should people contact if they have a problem with this package? You must have someones
name and email address here. You must make sure this is up to date and accurate.

Maintaining it is an active responsibility undertaken by the package developers and maintainers. Users
contact developers for various reasons.

Keep your email up to date in the DESCRIPTION file!

Maintainer: Who to complain to <your_fault@fix.it>

or

Authors@R: c(
person("Complain", "here", email="your_fault@fix.it", role=c("aut", "cre"),
person("Don't", "Complain", role="aut"))

)

NOTE: There should be only 1 maintainer (one “cre”). But all authors get credit for the package.

Interchangeable terminology

Bioconductor maintainers <-> Bioconductor developers <-> Package developer <-> developer

16.3.1 Why maintain your package

1. Changes in underlying code (upstream dependencies of your package) might break your package.

2. Packages using web resources might fail because of change of location of these resources.

3. Bug fixes reported or discovered due to usage.

4. Feature requests from users.

5. Improvements in the science behind your package, which lead to updates.
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Figure 16.1: Build machines on DEVEL

6. It leads to wide spread usage of your package.

7. It’s required, also a good practice that users appreciate.

8. Poorly maintained packages get deprecated if they fail build and check on Bioconductor during release
cycles. (Bioconductor is fairly serious about this)

16.3.2 Infrastructure used for maintenance

Build machines are dedicated towards building your package daily. As a maintainer it’s useful to check
your package build report once a week, both in the current RELEASE and DEVEL cycle.

http://bioconductor.org/checkResults/

Build machines cover three platforms (Linux, Windows and OS X) over RELEASE and DEVEL versions of
Bioconductor.

Version control - Since last year, GIT has been the primary version control system.

16.4 Outline how to use infrastructure

Everything you need is on the Bioconductor website. As a developer the link with most important resources,

http://bioconductor.org/developers/

16.4.1 Build report

Report of the build status of your package. It posts at around 11AM EST (can change sometimes) and is
located on the time stamp at the top of the page.

Two versions of the build report.

• Bioconductor RELEASE version

http://bioconductor.org/checkResults/release/bioc-LATEST/

• Bioconductor development version

http://bioconductor.org/checkResults/devel/bioc-LATEST/

Six build machines in total at Bioconductor.

DEVEL (3 for devel)

1. Linux (malbec1)
2. Windows (tokay1)
3. OS X (merida1)

RELEASE (3 for release)

http://bioconductor.org/checkResults/
http://bioconductor.org/developers/
http://bioconductor.org/checkResults/release/bioc-LATEST/
http://bioconductor.org/checkResults/devel/bioc-LATEST/
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Figure 16.2: Build machines on RELEASE

Figure 16.3: a4 R CMD INSTALL

1. Linux (malbec2)
2. Windows (tokay2)
3. OS X (merida2)

16.4.1.1 What is running on these machines?

16.4.1.1.1 INSTALL

Command:

/home/biocbuild/bbs-3.7-bioc/R/bin/R CMD INSTALL a4

http://bioconductor.org/checkResults/release/bioc-LATEST/a4/malbec2-install.html

16.4.1.1.2 BUILD

Command:

/home/biocbuild/bbs-3.7-bioc/R/bin/R CMD build a4

http://bioconductor.org/checkResults/release/bioc-LATEST/a4/malbec2-buildsrc.html

http://bioconductor.org/checkResults/release/bioc-LATEST/a4/malbec2-install.html
http://bioconductor.org/checkResults/release/bioc-LATEST/a4/malbec2-buildsrc.html
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Figure 16.4: a4 R CMD build

16.4.1.1.3 CHECK

Command:

/home/biocbuild/bbs-3.7-bioc/R/bin/R CMD check a4_1.28.0.tar.gz

http://bioconductor.org/checkResults/release/bioc-LATEST/a4/malbec2-checksrc.html

16.4.1.1.4 BUILD BIN

This makes the tar ball which is specific to the platform and propagates it to main repository.

The build machines display a status for each package. They indicate different things.

TIMEOUT - INSTALL, BUILD, CHECK or BUILD BIN of package took more than 40 minutes

ERROR - INSTALL, BUILD or BUILD BIN of package failed, or CHECK produced errors

WARNINGS - CHECK of package produced warnings

OK - INSTALL, BUILD, CHECK or BUILD BIN of package was OK

NotNeeded - INSTALL of package was not needed (click on glyph to see why)

skipped - CHECK or BUILD BIN of package was skipped because the BUILD step failed

NA- BUILD, CHECK or BUILD BIN result is not available because of an anomaly in the Build System

NOTE: The build machines run these commands a little differently and the maintainers need not do it the
same way.

16.4.1.2 Exercise:

Question:

http://bioconductor.org/checkResults/release/bioc-LATEST/a4/malbec2-checksrc.html
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Figure 16.5: a4 R CMD check

Figure 16.6: a4 buildbin
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Figure 16.7: Lights next to the build-bin

Filter packages on the DEVEL build machines which have a WARNING on their
build report. List the top 5 packages from this filter.

Question:

What is the timestamp on DEVEL build report of the package BiocParallel?

16.4.2 Version Numbering

Version numbering is crucial to getting your package to build on the Bioconductor build machines. Every
time you want to push a change, it’s important that you make a version number update if you want to your
package to propagate to your users. The package is not built unless there is a version number update.

https://bioconductor.org/developers/how-to/version-numbering/

16.4.2.1 Exercise:

Question:

A very common developer question is, "I made a commit and pushed to my
package, but the new build was not triggered. Why wasn't the
build triggered?"

The immediate response is to check if they issued a version bump. How
would someone check this?

Question:

What is the version number next to the RELEASE and devel versions
of your package? Do they align with Bioconductor policy as given
on https://bioconductor.org/developers/how-to/version-numbering/ ?

16.4.3 Landing page badges

What are badges?

https://bioconductor.org/developers/how-to/version-numbering/
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Figure 16.8: BiocGenerics badges

Badges can indicate the HEALTH and realiability of a package. A reason users look at the badges is to get
a sense of which packages to use in their analysis. Active maintainers, useful posts and how long the package
is in Bioconductor sway users towards packages.

Badges indicate the following:

1. platforms availability of the package

2. downloads statistics

3. posts on support.bioconductor.org which are related to that package based on the tag.

4. in Bioc how long the package has been in Bioconductor.

5. build current build status.

Where can I find these badges?

• Landing page to go to RELEASE

bioconductor.org/packages/release/BiocGenerics

• Landing page to go to devel

bioconductor.org/packages/devel/BiocGenerics

NOTE: After a push is made it can take up to 48 hours for it to appear on the build report and landing
pages - i.e. we do one pull, build, check, propagate in 24 hours - so if your commit was after the pull for the
day it wont be until the following day

16.4.4 Download statistics

The number reported next to each package name is the download score, that is, the average number of
distinct IPs that hit the package each month for the last 12 months (not counting the current month).

http://bioconductor.org/packages/stats/

Top 75 packages as of July 17th 3:15pm EST,

BiocGenerics Download statistics,

16.4.4.1 Exercise:

Question:

http://bioconductor.org/packages/stats/
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Figure 16.9: Top 75

Figure 16.10: BiocGenerics Download Statistics
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Get the download statistics to the package you maintain or the package
you use the most. Next, get the month in 2017 with the most number of
downloads.

16.4.5 RSS feeds

RSS feeds help developers keep track of the development going on in Bioconductor across all packages. There
are multiple ways to use RSS feeds, and you can use the application of your choice to subscribe to the feeds.

Blog which shows the 12 best RSS reader apps across all platforms.

Links for RSS feeds,

http://bioconductor.org/developers/rss-feeds/

Git log published on the website. The git log hosts the last 500 commits to bioconductor across all packages
in the development branch of Bioconductor.

http://bioconductor.org/developers/gitlog/

16.4.5.1 Exercise:

Question:

Take a package of your choice and subscribe to the RSS feed. Use a
tool from the given link, or one of your own liking. (I use
"feedly" the chrome extension)

16.4.6 Support site, Bioc-devel mailing list

Support infrastructure set up for Bioconductor users to be in touch with maintainers.

16.4.6.1 Mailing list

The mailing list bioc-devel is for all questions related package development, infrastructure, package support.
If a question is misplaced, the author will be pointed to the correct location to ask the question.

https://stat.ethz.ch/mailman/listinfo/bioc-devel

16.4.6.2 Support site

Public support site, with easy to use interface to ask questions among the broader community. Any and all
end-user questions are welcome here.

http://support.bioconductor.org/

16.4.7 GitHub

Optional, but recommended.

https://zapier.com/blog/best-rss-feed-reader-apps/
http://bioconductor.org/developers/rss-feeds/
http://bioconductor.org/developers/gitlog/
https://stat.ethz.ch/mailman/listinfo/bioc-devel
http://support.bioconductor.org/
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Figure 16.11: Git log on Jul 16th 2018 at 10:30 AM EST
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16.4.7.1 Sync package with Github / Bioconductor before every change

Do this every time there is an update on your package from your end, or, before you start developing.

Help with Git (most canonical location),

http://bioconductor.org/developers/how-to/git/

Sync package from Bioconductor repository to Github repository

http://bioconductor.org/developers/how-to/git/sync-existing-repositories/

16.4.7.2 Github issues

Github issues are more developer centric than mailing list and support site questions. This needs to be posted
directly on the development repositories of individual packages. Each package maintainer can choose to do
their development on Github giving an interface for issues.

The Bioconductor core team manages issues on the repositories maintained under the Bioconductor Organi-
zation on Github.

The packages maintained by Bioconductor core follow the structure

https://github.com/Bioconductor/<PACKAGE_NAME>/issues

Example: https://github.com/Bioconductor/GenomicRanges/issues

16.5 Round up of resources available

Material covered in this workshop very briefly, highlighting

1. Build machines, what commands the build machines run and what information is displayed on the
build reports.

2. How to check the HEALTH of your package with badges on the landing pages.

3. Download statistics of packages.

4. RSS feeds and subscribing to them, checking package development across bioconductor with GIT logs.

5. Support sites, mailing lists and where to get specific support as a maintainer.

6. Github and social coding with issues.

There is plenty of infrastructure not covered in this short workshop,

1. Docker containers.

2. AWS - Amazon Machine images(AMIs).

3. BiocCredentials Application for SSH key processing for developers.

4. Git + Bioconductor private git server.

5. Single package builder during package contribution.

6. Github and webhooks for continuous integration.

16.6 Acknowledgements

The Bioconductor core team.
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